FALL 2012 SEMI-ANNUAL MONITORING REPORT

K-B10300-00-04

January 2013

Submitted to:

WASTE MANAGEMENT OF CANADA

1271 Beechwood Road Napanee, ON K7R 3L1

www.wesa.ca

FALL 2012 SEMI-ANNUAL MONITORING REPORT

WASTE MANAGEMENT OF CANADA RICHMOND LANDFILL TOWN OF GREATER NAPANEE, ONTARIO

Prepared for:

WASTE MANAGEMENT OF CANADA

1271 Beechwood Road Napanee, ON K7R 3L1

Prepared by:

WESA Inc. 4 Cataraqui Street The Tower, The Woolen Mill Kingston ON K7K 127

WESA Project No.: K-B10300-00-04

January 2013

TABLE OF CONTENTS

1.		INTR	ODUCTION	1
2.		MON	NTORING PROGRAM	1
	2.1	Prog	ram Methodology	1
	2.2	WATE	r Sample Collection and Laboratory Analysis	. 2
	2.3	GROU	indwater Elevations	. 3
3.		MON	NTORING RESULTS AND DISCUSSION	. 3
	3.1	GROU	INDWATER RESULTS	. 4
	3.	1.1	Groundwater Elevations	. 4
	3.	1.2	Groundwater Analytical Results	. 5
	3.	1.3	Guideline B-7 Reasonable Use Limits (RULs)	.6
	5. 3	1.4 15	Off-Site Domestic Water Supply Well Results	. 0 7
	3.	1.6	Groundwater Chemistry Quality Assurance / Quality Control (QA/QC)	. 7
	3.2	SURFA	CE WATER RESULTS	. 8
	3.	2.1	Surface Water Flow Rates	. 8
	3.	2.2	Surface Water Analytical Results	. 8
	3.	2.4	Surface Water Quality Assurance / Quality Control (QA/QC)	. 9
	3.3	SUBSU	irface Gas Sampling	. 9
	3.4	Annl	jal Summary	10
4.		SUMI	MARY, CONCLUSIONS AND RECOMMENDATIONS	10
	4.1	Grou	INDWATER	.11
	4.2	SURFA	CE WATER	12
	4.3	S UBSU	IRFACE GAS	12
5.		LIMIT		12

LIST OF TABLES

- Table 1:
 Summary of Environmental Monitoring Program
- Table 2:
 Analytical Parameters for Water and Leachate Samples
- Table 3:
 Groundwater Elevation Monitoring Locations
- Table 4:Groundwater Elevations October 19, 2012
- Table 5a:Groundwater Quality Results October 22-23, 2012
- Table 5b:
 Groundwater Quality Results and Reasonable Use Limits October 22-23, 2012
- Table 6:Water Quality Results from Off-Site Domestic Supply Wells October 24, 2012
- Table 7:Surface Water Characteristics October 24, 2012
- Table 8:Surface Water Quality Results October 24, 2012
- Table 9:Subsurface Gas Monitoring Results October 24, 2012

LIST OF FIGURES

- Figure 1: Site Plan and Monitoring Locations
- Figure 2: Shallow Groundwater Flow Zone Potentiometric Surface October 19, 2012
- Figure 3: Intermediate Bedrock Groundwater Flow Zone Potentiometric Surface October 19, 2012

APPENDIX

Appendix A: Results from Analytical Quality Assurance / Quality Control (QA/QC) Program

1. INTRODUCTION

The purpose of this document is to present results and to provide an interpretation of the data that were collected during the fall 2012 semi-annual monitoring event at the Waste Management of Canada Corporation (WM) Richmond Landfill.

The WM Richmond Landfill is approved as a 16.2 hectare waste disposal (landfilling) facility within a total site area of 138 hectares, located on parts of Lots 1, 2 and 3, Concession IV of the former Township of Richmond, now in the Town of Greater Napanee, Ontario.

2. MONITORING PROGRAM

2.1 PROGRAM METHODOLOGY

The fall 2012 semi-annual monitoring event was conducted in accordance to the updated Environmental Monitoring Plan for the site dated June 29, 2010 (herein referred to as the "EMP"). The amended Environmental Compliance Approval (ECA) number A371203, issued by MOE January 9, 2012 stipulates (Condition 8.5(a)) that the monitoring programs shall be carried out for groundwater, surface water and landfill gas on an interim basis in accordance with the June 29, 2010 EMP, until a new monitoring program has been approved.

The site layout and monitoring locations are shown on Figure 1. The monitoring programs for groundwater, surface water and landfill gas are summarized in Table 1.

The fall monitoring event was conducted between October 19 and October 24, 2012. The activities completed included:

- Water levels were recorded on October 19, 2012, except from groundwater monitors M18, M31, and M39 (all dry), and M19 and OW57 (both damaged);
- Seven (7) off-site domestic water supply wells were sampled on October 24, 2012. Water samples from private supply wells were analyzed for groundwater inorganic and general parameters. The supply well at 1097 Beechwood Road could not be sampled as no residents were onsite during the sampling event;
- A total of 42 groundwater monitors were sampled on October 22 and 23, 2012. Monitoring wells M57 and M75 were sampled despite integrity concerns related to the presence of bentonite fines in the purge water. Three (3) groundwater monitoring wells could not be sampled because they (a) had insufficient recovery for sampling after purging (M29 and M39), or (b) were damaged (the standpipe in M58-4 was broken

below the ground surface and contained bentonite). Samples were analyzed for the suite of groundwater inorganic and general parameters;

- Surface water sampling was conducted on October 24, 2012 from locations 52, 53, 56 and 57 from Marysville Creek, while sampling at 54R, 55 and 58R from Beechwood Ditch were not collected as it was dry. Surface water samples were analyzed for the surface water inorganic and general parameters;
- Landfill gas migration monitoring was conducted on October 24, 2012. Field measurements were made with a RKI Eagle probe calibrated to methane gas response at six (6) gas monitors (GM1, GM3, GM4-1, GM4-2, GM5 and GM6); and
- Additionally, five (5) field duplicate samples, two (2) field blanks, and one (1) trip blank were collected during the fall sampling event, for a total of eight (8) Quality Assurance/Quality Control (QA/QC) samples. Deionised water for analysis of blank samples was supplied by the laboratory.

2.2 WATER SAMPLE COLLECTION AND LABORATORY ANALYSIS

Groundwater and surface water samples were collected in accordance with accepted industry protocols. Groundwater samples were collected using dedicated Waterra inertial lift pumps connected to dedicated polyethylene tubing. Three casing volumes of water were purged from each monitoring well prior to the collection of groundwater samples. During purging, readings for pH, conductivity and temperature were recorded on a regular basis. The stabilization of the parameters was used to assess when well purging was complete. Low producing wells were purged dry and allowed to recover prior to sampling. If the monitoring well had not recovered sufficiently for sampling within 24 hours, the monitor was considered dry and a sample was not collected.

Domestic supply wells were sampled at an access point before any treatment system. A typical sampling location was a tap or access located near the pressure tank or when access to the treatment system was not available, the sample was collected from the kitchen tap (with the aerator screen removed). Prior to collecting the water sample, the water was allowed to run for a minimum of five but more typically closer to 10 minutes to ensure the volume of the pressure tank and supply line was purged and that the sample would be representative of well water conditions.

Surface water samples were collected using a clean bottle where water depth was sufficient; at sampling locations where water depth was an issue, a 50 cc syringe was used to carefully collect the surface water as not to disturb the bottom sediments. Surface water sampling locations were sampled from downstream to upstream to prevent any re-suspension of sediment impacting the downstream sampling locations. The pH, temperature, and conductivity of the surface water

were obtained in the field at all surface water sampling points while minimizing disturbance of the bottom sediment.

All water samples were placed in bottles supplied and prepared by the laboratory. The samples were packed in coolers with ice and shipped by courier to the laboratory. All samples were analysed by Maxxam Analytics Inc. of Mississauga, ON, which is accredited by the *Canadian Association for Laboratory Accreditation Inc. (CALA).* Table 2 presents a summary of groundwater, surface water and leachate analytical parameters.

2.3 GROUNDWATER ELEVATIONS

Prior to collecting groundwater samples, water levels were recorded to the nearest 0.01 m using an electronic water level meter. Table 3 presents groundwater elevation monitoring locations.

3. MONITORING RESULTS AND DISCUSSION

Background information concerning the site geology and hydrogeology was described in detail in the Site Conceptual Model (SCM) report¹, and is summarized here. The SCM report describes the groundwater flow conditions at the Richmond Landfill. Based on the results from extensive studies conducted previously at the site, the basic hydrogeological framework for the facility has been defined as follows:

- the active groundwater flow zone at the site extends to a depth of approximately 30 metres below the top of bedrock;
- the shallow groundwater flow zone is conceptualized as the overburden, the overburdenbedrock contact and the upper one to two metres of bedrock;
- the direction of groundwater flow in the shallow flow zone is strongly influenced by topography;
- the intermediate bedrock flow zone extends from one to two metres below top of bedrock to a depth of approximately 30 metres below top of bedrock;
- groundwater flows through a well-connected network of fractures in the upper 30 metres of bedrock;
- the dominant fracture orientation is horizontal to sub-horizontal; however, vertical to subvertical fractures are present providing hydraulic connection between horizontal fractures;
- hydraulic connection of fractures exists in the intermediate bedrock flow zone to the west, south and east of the site (horizontal and vertical connections);

¹ Site Conceptual Model Report, WM Richmond Landfill, prepared by Dr. B.H. Kueper and WESA Inc., October 2009

- intermediate bedrock flownets show that groundwater generally flows to the west from the western edge of the landfill, to the south-southeast from the southern edge of the landfill, to the southwest from the southwest corner of the landfill and north to northwest from the northwest portion of the landfill;
- the hydraulic conductivity of the intermediate bedrock is lower to the north and east of the landfill compared to other areas of the site, implying that the rate of groundwater flow is lower than in areas south, southeast and west of the landfill; and
- flow directions in the intermediate bedrock zone are variable with season.

3.1 GROUNDWATER RESULTS

3.1.1 Groundwater Elevations

Groundwater elevations from program monitoring wells were measured on October 19, 2012 and are presented in Table 4. The groundwater flow direction within the shallow and intermediate bedrock groundwater flow zones are shown on Figures 2 and 3, respectively. The groundwater flow directions were inferred by interpolating the hydraulically responsive wells screened within the corresponding groundwater flow zone, and are consistent with historical results.

The fall 2012 shallow groundwater flownet (Figure 2) is consistent with historical results and shows that the Empey Hill drumlin southwest from the landfill creates a flow divide with shallow groundwater being directed both to the north and the south. The northerly flowing groundwater is oriented toward Marysville Creek, while shallow groundwater to the south flows towards Beechwood Ditch. Shallow groundwater south of Beechwood Road flows locally to the north-northwest, towards an area of lower hydraulic head that may be influenced by the pond system in the south part of the site (see Figure 2). Shallow groundwater east of the landfill is influenced by a local zone of higher water levels in the vicinity of monitoring well M96. Shallow groundwater north of M96 flows to the north while groundwater south of M96 flows to the west-southwest.

The fall 2012 intermediate bedrock zone flownet is presented on Figure 3. Water levels from four (4) intermediate bedrock monitors identified as "responsive" in the 2009 SCM report were not used to prepare the fall 2012 flownet. The wells were excluded from the interpolation on the basis of: (a) integrity concerns with the bentonite seal (M57); and (b) water levels were not static, believed to be recovering from past sampling events (M57, M70-1 and M82-1). Groundwater in the intermediate bedrock flow zone generally flows to the north, west, and south relative to the landfill, while in the southeastern portion of the site and beyond to the south-southeast, the direction of groundwater flow within the intermediate flow zone is variable

as a result of changing recharge conditions (transient flow regime). During this monitoring event, the groundwater contours show that flow in the southeast part of the site is generally towards the east, while south of Beechwood Road flow returns to a southerly direction.

3.1.2 Groundwater Analytical Results

Results from the groundwater monitoring wells sampled in fall 2012 are presented in Table 5a. Groundwater quality data for the fall 2012 monitoring event are similar to historical results, and are discussed in this section.

Slightly elevated concentrations of a number of water quality parameters (e.g., alkalinity, chloride, conductivity, DOC, iron, manganese, sodium and/or TDS) were observed in some shallow groundwater zone monitoring wells located in close proximity to the landfill footprint (M41, M66-2, M101, M102 and M103). In other areas of the site, there is no evidence of groundwater impacts away from the landfill footprint in the shallow groundwater flow zone. Isolated occurrences of elevated concentrations of water quality parameters (i.e., one or two parameters per sample) are seen elsewhere on the Site. No indications of elevated concentrations related to impacts are identified at the property boundary in the shallow flow zone.

Analytical results from intermediate bedrock groundwater monitors sampled in fall 2012 show that groundwater quality in this groundwater flow zone is highly variable across the site. Additional investigative work related to the observed chemistry south of the landfill has been documented in the Groundwater Action Plan Investigation Report (Draft for Review dated October 2012), which has been submitted under separate cover to MOE. The results of the additional investigation lead to the conclusion that leachate impacts are evident in selected monitoring wells northwest and immediately south of the landfill footprint. There is no evidence of landfill leachate impacts in any of the monitoring wells that are located south of the landfill footprint and west of the site entrance road.

Based on the new physical and chemical hydrogeologic information provided in the Action Plan Report, WESA has interpreted that monitoring wells near the south boundary of the landfill site (at Beechwood Road), and east of the landfill entrance road, are impacted by groundwater flowing north and northeast from south of Beechwood Road, and not from the landfill. However, the MOE has interpreted that these monitoring wells south of the landfill, close to Beechwood Road (e.g., M10-1 and M107) are impacted by leachate from the landfill. As described below in Section 3.1.3, Waste Management is taking action in 2013 to resolve the Ministry's interpretation of non-compliance.

Continued monitoring of the groundwater chemistry in the monitoring wells around the landfill and in the low head areas is warranted to assess any temporal trends in the groundwater conditions.

3.1.3 Guideline B-7 Reasonable Use Limits (RULs)

Selected monitoring wells within the low-head areas of the WM Richmond Landfill in both the Shallow and Intermediate Bedrock Flow Zones are compared to the RULs derived from laboratory analytical results (Table 5b). Proposed RULs for leachate indicator parameters and trigger monitors were presented in the EMP dated June 29, 2010. These will be re-examined during the development of an updated EMP, but are used here on an interim basis.

Slightly elevated concentrations of a number of inorganic or general water quality parameters (e.g., alkalinity, boron, chloride, chromium, DOC, iron, manganese, sodium and/or TDS) were observed in shallow groundwater zone monitoring wells (M54-4, M66-2, M67-2, M80-2 and M87-2). However, there are no indications of leachate impacts in the shallow groundwater zone at the landfill property boundaries.

Slightly elevated concentrations of a number of water quality parameters (e.g alkalinity, boron, chloride, DOC, iron, manganese, sodium and/or TDS) were observed in some intermediate groundwater zone monitoring wells (M10-1, M49-1, M56-2, M57, M70-1, M82-1, M82-2 and M107). The elevated concentrations observed at M49-1, M57 and M70-1 are interpreted to be from groundwater mixing with deeper saline water, as indicated by the high sodium, chloride and TDS levels. At M82-1 and M82-2 (west boundary of the site at Marysville Creek), the TDS levels are only slightly elevated, and the observed concentrations do not indicate leachate impacts. At M56-2 (background monitor along the western boundary), manganese is the only parameter above the RUL, and the water quality does not reflect any leachate impacts.

As noted in the preceding section, the MOE has interpreted that the RUL exceedances south of the landfill close to Beechwood Road are caused by the landfill (e.g., M10-1 and M107), and the exceedances place the landfill in non-compliance with Environmental Compliance Approval No. A371203 issued for the site.

Waste Management is currently addressing this non-compliance with MOE.

3.1.4 Status of Monitoring Wells and Compliance with Ontario Regulation 903

During the fall 2012 monitoring event, the conditions of monitoring wells were inspected. Any repairs, such as new locks, labels or well caps, etc. were made as necessary. Watertight casings

and seals remain in place at all monitors to ensure that surface water or foreign materials do not infiltrate the wells. The monitoring wells comply with the applicable sections of Ontario Regulation 903 relevant to "test holes" as defined in the regulation, as well as the overall intent of the regulation to protect groundwater supplies. With the exception of monitors M19, M58-4 and OW57 (damaged) as well as M57 and M75 (integrity of the bentonite seals in monitors suspect due to the presence of bentonite in purge water), all of the monitoring wells included in the EMP are currently active. The wells identified above as damaged or with suspect integrity will be addressed as part of the updated EMP, anticipated to be completed in 2013 or 2014.

3.1.5 Off-Site Domestic Water Supply Well Results

Results from off-site private water supply wells sampled in fall 2012 are presented in Table 6.

Comparison with Ontario Drinking Water Quality Objectives and Guidelines (ODWSOG, 2006) revealed all parameters were below their respective maximum acceptable concentrations (MAC) or interim maximum acceptable concentrations (IMAC) as specified in Table 2 of the ODWSOG, with the exception of lead (MAC 0.01 mg/L) with measured levels of 0.014 mg/L and 0.011 mg/L, at 1181 and 1206 Beechwood Road, respectively. Some inorganic parameters (general chemistry and dissolved metals) were measured at concentrations exceeding their respective aesthetic objective (AO) or operational guideline (OG) from Table 4 of the ODWSOG.

As was the case in previous sampling events, most volatile organic compounds (VOCs) in off-site supply wells were reported below the laboratory reporting limit (RL) at all locations, with the exception of some VOCs that were detected in measurable quantities above the RL at some locations. In all cases, VOC concentrations were below the MAC or AO.

The moderate mineralization observed at the private water supply wells sampled (elevated hardness, TDS and sodium) is consistent with the local hydrogeological setting (carbonate aquifer with documented saline groundwater at depth). The origin of the elevated concentration in some dissolved metals (iron, manganese) and DOC at some locations is unknown. The low levels of VOCs observed at some locations adjacent to 1252 Beechwood Road are likely attributable to the historical release of VOCs at this location (former abattoir).

3.1.6 Groundwater Chemistry Quality Assurance / Quality Control (QA/QC)

An evaluation of the QA/QC data (from duplicate and blank samples) is included in Appendix A, where analytical results are compared between regular samples and their corresponding field duplicate samples, submitted to the laboratory without identifying the location they were collected from. A standard margin of error of 20% (relative percent difference (RPD) between

regular sample and duplicate) was deemed acceptable for field duplicates. In general, the comparison between samples and duplicates shows very good correlation for the majority of analyzed constituents. All parameters for groundwater duplicate QA/QC sampling were well within the 20% margin of error with two exceptions as summarized in Appendix A. Of these two that had RPD greater than 20%, one (chemical oxygen demand at OW54-D) was measured at a low concentration (less than 5 times the RDL) and was therefore within acceptable margin of error. All parameters were near or below the RDL in equipment and field blanks.

3.2 SURFACE WATER RESULTS

The two water courses that may receive surface water/storm water runoff from the Richmond Landfill are Marysville Creek to the north of the waste mound and Beechwood Ditch to the south (Figure 1). The Beechwood Ditch is a man-made surface water course that flows from the east onto WM property. It then flows west across a portion of the site before again crossing Beechwood Road and travelling southwest to cross County Road 10, and joins Marysville Creek east of Highway 49 and north of Highway 401. Both the Beechwood Ditch and Marysville Creek flow intermittently in the vicinity of the landfill. Marysville Creek has some base flow locally, and flows on a continuous basis west of County Road 10 (Deseronto Road). Marysville Creek eventually discharges into the Bay of Quinte at Hungry Bay.

All surface water monitoring locations are shown on Figure 1.

3.2.1 Surface Water Flow Rates

Visual observations of surface water flow and general water characteristics for the fall sampling program are summarized in Table 7. In general, surface water flow rates were variable, ranging from non-existent (dry) at the Beechwood Ditch (S5, S4R, S8R) to negligible (at S2, S3, S6 and S7) where flow velocity was too low to be measurable.

3.2.2 Surface Water Analytical Results

The results from the surface water locations sampled in fall 2012 are presented in Table 8, and were similar to historical results.

Surface water quality from samples collected in fall 2012 was compared to the Provincial Water Quality Objectives (PWQO) (see Table 8).

No samples were collected from Beechwood Ditch as it was dry during the sampling event. Background surface water quality was monitored from a location 4 m upstream from station S2

for Marysville Creek as minimal flows were observed at the usual location. Storm water runoff from the existing landfill area flows to one of three storm water sedimentation retention ponds, located to the northeast, northwest and south of the landfill footprint.

All constituents analysed in surface water samples were below their respective PWQO, with the exception of (a) phenols which were detected at concentrations slightly exceeding the PWQO of 0.001 mg/L at the upstream location S2 and the downstream location of S7, with the respective concentrations of 0.0028 and 0.0013 mg/L; (b) phosphorus which was detected at concentrations slightly exceeding the PWQO of 0.03 mg/L at all upstream and downstream locations, ranging between 0.052 mg/L and 0.12 mg/L; and (c) iron which was detected at concentrations exceeding the PWQO of 0.3 mg/L at the and downstream locations S3 and S7, having the respective concentrations of 0.81 and 1.2 mg/L.

Results from fall 2012 indicate that the landfill is not causing adverse impacts to surface water quality.

3.2.4 Surface Water Quality Assurance / Quality Control (QA/QC)

An evaluation of the QA/QC data (from duplicate and blank samples) is included in Appendix A, where analytical results are compared between regular samples and their corresponding field duplicate samples, submitted to the laboratory without identifying the location they were collected from. A standard margin of error of 20% was deemed acceptable for field duplicates. In general, the comparison between samples and duplicates shows very good correlation for the majority of analyzed constituents. Most of the parameters for the surface water duplicate QA/QC sample (location S3) were well within the 20% margin of error, with the exception of some constituents (aluminum, COD, iron, manganese, total phosphorus, titanium, TKN, TSS and vanadium); of these, some (titanium, TKN and vanadium) were measured at low concentration (less than ~5 times the laboratory reportable detection limit), while the others may result from the low flow conditions observed and possibly higher margin of error related to the sampling activities themselves.

3.3 SUBSURFACE GAS SAMPLING

On October 24, 2012, WESA inspected the subsurface gas monitoring probes and obtained measurements at all locations. Measurements were made using a RKI Eagle probe calibrated to methane gas response. The location and condition of the gas monitors and the measurement results are shown in Table 9. Readings were 0 ppm at all locations except GM3 (15 ppm), GM4-2 (5 ppm) and GM6 (5 ppm), well below the lower explosive limit (LEL) of 5% or 50,000 ppm).

3.4 ANNUAL SUMMARY

A comparative review of groundwater quality results between this and previous sampling events indicates that constituent concentrations vary over time but for the most part have remained relatively consistent over the current calendar year and over the past 10 years or more. Depending on which monitoring point and more importantly at which time scale is reviewed, conflicting trends in concentrations can occur sporadically. However since the revised EMP dated June 29, 2010 the majority of the patterns are seasonally variable but relatively similar.

Alkalinity, chloride, iron, manganese, and total dissolved solids (TDS) concentration data were reviewed in detail for shallow monitoring wells M41, M66-2, M101, M102 and M103 and intermediate monitoring wells M6-3, M10-1, M49-1, M57, M59-2, M70-1, M105 and M106 from the spring of 2011 to the fall of 2012. Over this time period the vast majority of the intervals show stabilized concentrations for almost all parameters analyzed. Exceptions to this generalization include M6-3 for chloride (variable/oscillating pattern) and TDS (downward trend), M70-1 for chloride, iron and TDS (variable/oscillating pattern), M57 for manganese (variable/oscillating).

4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The fall 2012 monitoring program included the monitoring of groundwater, surface water, and landfill gas migration, in accordance with the site groundwater monitoring requirements outlined in the revised EMP dated June 29, 2010, as specified in the Amended Environmental Compliance Approval (ECA) issued on January 9, 2012.

The following were completed between October 19 and 24, 2012:

- Water levels were measured from 66 groundwater monitoring wells thirty-six (36) in the shallow groundwater flow zone and thirty (30) in the intermediate bedrock flow zone).
- Fourty-two (42) groundwater monitors (seventeen (17) completed in the shallow zone and twenty-five (25) in the intermediate bedrock) were sampled for analytical testing.
- Seven (7) off-site domestic water supply wells located along Beechwood Road were sampled for analytical testing. 1097 Beechwood road could not be sampled as no residents were onsite during the sampling event.
- Four (4) surface water locations were sampled for analytical testing while some sampling stations were dry and therefore not sampled.
- A total of eight (8) Quality Assurance/Quality Control (QA/QC) samples were collected (5 field duplicates, two (2) field blanks and one (1) trip blank).
- Subsurface gas concentrations were recorded from six (6) on-site gas monitoring wells.

4.1 GROUNDWATER

- Groundwater flow directions interpreted from monitors known to be hydraulically active were consistent with historical flownets:
 - Shallow groundwater flow is influenced by local topographic highs in the southwestern (Empey Hill Drumlin) and eastern (groundwater monitor M96 area) portions of the site, and is characterized by a flow divide with shallow groundwater being directed both to the north (toward Marysville Creek) and the south (toward Beechwood Ditch).
 - Groundwater in the intermediate bedrock flow zone generally flows to the north, west, and south relative to the landfill, while in the southeastern portion of the site and beyond to the south-southeast, the direction of groundwater flow within the intermediate flow zone is variable as a result of changing recharge conditions (transient flow regime).
- Groundwater quality data from fall 2012 are generally consistent for the current calendar year and with historical results.
- Slightly elevated concentrations of a number of water quality parameters are seen in the shallow groundwater zone northwest and north of the Phase 1 landfill footprint. In other areas of the site, there is no evidence of groundwater impact away from the landfill footprint in the shallow groundwater flow zone.
- The geochemical results for the intermediate bedrock groundwater flow zone indicate higher concentrations of water quality parameters south of the landfill relative to the concentrations west and north of the landfill. The higher concentrations are downgradient from the landfill footprint and occur in monitoring wells that are known to be hydraulically connected to each other. These concentrations may reflect minor groundwater impacts from site activities.
- The moderate mineralization observed at the off-site private water supply wells along Beechwood Road (elevated hardness, TDS and sodium) is consistent with the local hydrogeological setting (carbonate aquifer with documented saline groundwater at depth). The origin of the elevated concentration in some dissolved metals (iron, manganese) and DOC at some locations is unknown.
- Continued groundwater monitoring within the shallow and intermediate bedrock groundwater flow zones between the landfill footprint and the low-head areas is warranted in order to further examine groundwater quality and any trends over time.
- It is recommended that the following groundwater monitoring wells be replaced, upgraded or removed from the monitoring program for the reasons stated below, as these wells have become unreliable for water level and/or quality monitoring as a result of these issues:

- M29 and M39: low recovery small diameter (2.54 cm) overburden monitors that are often dry and/or cannot be sampled after being purged dry;
- M57 and M75: integrity concerns with the bentonite seals (presence of bentonite in purge water); and
- M19, M58-4 and OW57: damaged monitors.

Repair, upgrade or replacement of these wells will be subject to the outcome of the updated EMP (as per Condition 8.5(b) of the Amended ECA.

4.2 SURFACE WATER

- No samples were collected in Beechwood Ditch as it was dry.
- The concentrations observed are within the range of historical monitoring results.
- Concentrations of total phosphorus exceeded the PWQO during the fall 2012 sampling event for all upstream and downstream locations sampled. Concentrations of phenols exceeded the PWQO at the upstream location of 52 and the downstream location of 57. Concentrations of iron were above the PWQO at the downstream locations 53 and 57.
- The results indicate that surface water runoff from the site or discharge of contaminated groundwater is not affecting Marysville Creek.

4.3 SUBSURFACE GAS

• All measurements for methane gas were below the LEL of 5%, or 50,000 ppm.

5. LIMITING CONDITIONS

The fall 2012 monitoring program involved the collection of groundwater (from on-site monitoring wells and off-site domestic supply wells) and surface water for analyses at the site monitoring locations. The data collected during this investigation represent the conditions at the sampled locations only.

The conclusions presented in this report represent our professional opinion and are based on the conditions observed on the dates set out in the report, the information available at the time this report was prepared, the scope of work, and any limiting conditions noted herein.

WESA provides no assurances regarding changes to conditions subsequent to the time of the assessment. WESA makes no warranty as to the accuracy or completeness of the information

provided by others or of the conclusions and recommendations predicated on the accuracy of that information.

This report has been prepared for Waste Management of Canada. Any use a third party makes of this report, any reliance on the report, or decisions based upon the report, are the responsibility of those third parties unless authorization is received from WESA in writing. WESA accepts no responsibility for any loss or damages suffered by any unauthorized third party as a result of decisions made or actions taken based on this report.

Respectfully submitted,

Michaet

Michael Melaney, M.Sc., P.Eng. Intermediate Engineer/Hydrogeologist

François A. Richard, Ph.D, P.Geo. Senior Hydrogeologist

Chuid Hardin

David Harding, M.Sc. P.Eng. Senior Consulting Engineer

TABLES

Monitoring Locations		Parameter Suite	Monitoring Frequency
Shallow Groundwater Flow Zone Mo	onitors		
M12, M14, M15, M16, M18, M19, M2 M38, M39, M41, M47-3, M53-4, M5 4, M70-3, M77, M80-2, M81, M87-2 M100, M101, M102, M103, OW37-s,	23, M27, M28, M29, M30, M31, M35, 64-4, M58-4, M60-4, M66-2, M67-2, M68- 2, M88-2, M89-2, M96, M97, M98, M99-2, OW57	Groundwater Elevations	Semi-annual: Spring and Fall
M29, M39, M41, M53-4, M54-4, M5 2, M81, M87-2, M96, M97, M99-2, J	58-4, M66-2, M67-2, M68-4, M70-3, M80- M101, M102, M103, OW37-s	Groundwater Inorganic & General	Semi-annual: Spring and Fall
M41, M58-4, M96, M97, M53-4, M5 2, M101, M102, M103, OW37-s	54-4, M66-2, M67-2, M70-3, M80-2, M87-	VOCs	Annual: Spring
Intermediate Bedrock Groundwater I	Flow Zone Monitors		
M3A-3, M9-3, M10-1, M49-1, M50-3 M59-4, M60-1, M63-2, M64-2, M70 M82-2, M91-1, M95-1, M105, M107*	, M56-2, M57, M58-3, M59-2, M59-3, -1, M71, M72, M73, M74, M80-1, M82-1, , OW54-i, OW54-d	Groundwater Elevations	Semi-annual: Spring and Fall
M5-3, M6-3, M9-3, M10-1, M49-1, N 4, M70-1, M71, M72, M74, M75, M8 M107*, OW54-d	156-2, M57, M58-3, M59-2, M59-3, M59- 30-1, M82-1, M82-2, M91-1, M95-1, M105,	Groundwater Inorganic & General	Semi-annual: Spring and Fall
M5-3, M6-3, M9-3, M10-1, M49-1, M M80-1, M82-1, M82-2, M91-1, M95-1	156-2, M57, M59-3, M70-1, M74, M75,	VOCs	Annual: Spring
Surface Water Sampling Locations		ł	
Beechwood Ditch	S5, S4R and S8R	Surface Water Inorganic and General	Semi-annual: Spring and Fall
	S8R	VOCs	Annual: Spring
Marysville Creek	\$2, \$3, \$6 and \$7	Surface Water Inorganic and General	Semi-annual: Spring and Fall
	S2 and S3	VOCs	Annual: Spring
Leachate Monitoring Locations			
North Chambe	er and South Chamber	Groundwater Inorganic & General	Annual: Spring
		VOCs	
GM1, GM3, GM2	1-1, GM4-2, GM5, GM6	% methane by volume	Semi-annual: Spring and Fall
Off-site Domestic Water Supply Well	5	1	
1097 Beechwood Road 1121 Beechwood Road 1144 Beechwood Road 1181 Beechwood Road	1206 Beechwood Road 1250 Beechwood Road 1252 Beechwood Road 1264 Beechwood Road	Groundwater Inorganic & General, VOCs	Semi-annual: Spring and Fall

* M107: Originally labelled as M106 in EMP dated June 29, 2010

Groundwater Inorganic and C	Seneral Parameters	
Alkalinity	Conductivity	Nitrite
Ammonia (total)	Copper	pН
Arsenic	Dissolved organic carbon	Phenols
Barium	Hardness	Phosphorus (total)
Biological oxygen demand	Iron	Potassium
Boron	Lead	Sodium
Cadmium	Magnesium	Sulphate
Calcium	Manganese	Total dissolved solids
Chemical oxygen demand	Mercury	Total Kjeldahl Nitrogen
Chloride	Naphthalene	Zinc
Chromium (total)	Nitrate	
Surface Water Inorganic and G	General Parameters	
Alkalinity	Cyanide (free)	Total dissolved solids
Ammonia (total)	Hardness	Total kjeldahl nitrogen
Arsenic	Iron	Total phosphorus
Barium	Lead	Total suspended solids
Biological oxygen demand	Magnesium	Zinc
Boron	Mercury	
Cadmium	Naphthalene	
Calcium	Nitrate	Field measured:
Chemical oxygen demand	Nitrite	conductivity
Chloride	Phenols	dissolved oxygen
Chromium (total)	Potassium	estimated flow rate
Conductivity	Sodium	pH
Copper	Sulphate	temperature
Volatile Organic Compounds	(VOCs)	
1,1,1,2-Tetrachloroethane	Benzene	Ethylbenzene
1,1,1-Trichloroethane	Bromodichloromethane	m&p-Xylene
1,1,2,2-Tetrachloroethane	Bromoform	o-Xylene
1,1,2-Trichloroethane	Bromomethane	Styrene
1,1-Dichloroethane	Carbon tetrachloride	Toluene
1,1-Dichloroethylene	Chlorobenzene	Trans-1,2-Dichloroethylene
1,2-Dibromoethane	Chloroethane	Trans-1,3-Dichloropropylene
1,2-Dichlorobenzene	Chloroform	Tetrachloroethylene
1,2-Dichloroethane	Chloromethane	Trichloroethylene
1,2-Dichloropropane	Cis-1,2-Dichloroethylene	Trichlorofluoromethane
1,3,5-Trimethylbenzene	Cis-1,3-Dichloropropylene	Vinyl chloride
1,3-Dichlorobenzene	Dichloromethane (methylene c	hloride)
1,4-Dichlorobenzene	Dibromochloromethane	

Table 3. Groundwater Elevation Monitoring Locations

Location	Shallow (Groundwa Zone	ter Flow	Interme	diate Groun Flow Zone	dwater
	M27	M58-4	M98	M3A-3	M59-4	M82-1
	M28	M67-2	M99-2	M56-2	M72	M82-2
West	M29	M87-2	M100	M58-3	M73	M91-1
of landfill footprint	M30	M88-2	M101	M59-2	M74	M95-1
	M31	M89-2	M102	M59-3		
	M38	M97	OW37-s			
North	M35	M66-2		M60-1		
NORIN of log dfill fo otonint	M39	M103				
of landfill footprint	M60-4					
	M12	M18	M80-2	M9-3	M64-2	M105
South	M14	M41	M81	M10-1	M71	M107*
South	M15	M53-4	OW57	M49-1	M80-1	
of landfill footprint	M16	M54-4		M57	OW54-i	
				M63-2	OW54-d	
East	M19	M68-4	M96	M50-3		
	M23	M70-3		M70-1		
of landfill footprint	M47-3	M77				

* M107: Originally labelled as M106 in EMP dated June 29, 2010

Monitoring Well	Water Level (masl)						
Shallow Ground	water Flow Zone	2					
M12	125.21	M31	DRY	M67-2	122.25	M98	129.49
M14	125.72	M35	124.04	M68-4	123.67	M99-2	129.39
M15	125.00	M38	124.79	M70-3	126.78	M100	124.84
M16	124.15	M39	DRY	M77	123.68	M101	123.80
M18	DRY	M41	124.65	M80-2	123.36	M102	124.13
M19	DAMAGED	M47-3	124.12	M81	124.31	M103	123.21
M23	125.29	M53-4	124.76	M87-2	122.85	OW37-s	121.99
M27	126.20	M54-4	124.10	M88-2	126.51	OW57	DAMAGED
M28	126.41	M58-4	123.00	M89-2	128.43		
M29	123.51	M60-4	123.84	M96	127.02		
M30	123.58	M66-2	122.12	M97	123.62		
Intermediate Be	drock Groundwa	ter Flow Zone					
M3A-3	124.44	M59-2	123.03	M72	122.76	M105	120.18
M9-3	120.58	M59-3	123.00	M73	122.82	M106	122.91
M10-1	120.14	M59-4	123.00	M74	123.50	M107	120.17
M49-1	119.79	M60-1	122.63	M80-1	123.00	M108	119.97
M50-3	124.41	M63-2	121.20	M82-1	120.91	OW54-d	119.97
M56-2	122.94	M64-2	118.73	M82-2	122.72	OW54-i	119.97
M57	108.67	M70-1	113.99	M91-1	122.92		
M58-3	122.96	M71	120.14	M95-1	122.83		

New end end end end end end end end end end end end end end end end end <			Alkalinity	Ammonia	Arsenic	Barium	Biochemical Oxygen Demand	Boron	Cadmium	Calcium	Chemical Oxygen Demand	Chloride	Chromium	Conductivity	Copper	Dissolved Organic Carbon	Hardness	lron	Lead	Magnesium	Manganese	Mercury	Naphthalene	Nitrate	Nitrite	pH (Lab)	Phenols	Phosphorus (total)	Potassium	Sodium	Sulphate	Total Dissolved Solids	Total Kjeldahl Nitrogen	Zinc
Subset weight	Name	Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	unitless	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Shallow	Groundwater	Flow Zor	ne*																														
	M41	22/10/2012	460	< 0.15	< 0.001	0.094	< 2	0.061	< 0.0001	170	16	180	< 0.005	1590	0.0016	3.3	760	< 0.1	< 0.0005	83	0.048	< 0.0002	< 0.0005	< 0.1	< 0.01	7.87	< 0.001	< 0.03	14	41	83	1040	0.8	< 0.005
Met Subset Met Subset Met Subset Subset Subset Subset Subset Subset Subset Subset Subset	M53-4	23/10/2012	310	< 0.15	< 0.001	0.055	< 2	< 0.01	< 0.0001	110	17	4	< 0.005	847	< 0.001	2.8	380	< 0.1	< 0.0005	24	< 0.002	< 0.0002	< 0.0005	< 0.1	< 0.01	7.88	< 0.001	< 0.03	0.43	51	130	540	< 0.7	0.0067
Mach Mach Mach Mach Mach	M54-4	23/10/2012	410	< 0.15	< 0.001	0.18	< 2	0.034	< 0.0001	130	10	67	< 0.005	1000	< 0.001	2	430	< 0.1	< 0.0005	26	0.0074	< 0.0002	< 0.0005	< 0.1	< 0.01	7.56	< 0.001	0.12	1.4	53	41	564	< 0.7	0.0081
Mach State State State S	M66-2	23/10/2012	380	0.53	0.0028	0.029	< 2	1.4	< 0.0001	83	< 4	140	< 0.005	1680	< 0.001	5	370	1.6	< 0.0005	40	0.036	< 0.0002	< 0.0005	< 0.1	< 0.01	8.08	< 0.001	0.03	10	230	250	960	0.7	0.0082
1 1 2 0 0 0 0 0 <	M67-2	23/10/2012	360	0.98	0.0029	0.24	< 2	0.83	< 0.0001	51	8	5	0.022	724	< 0.001	2.5	250	0.4	< 0.0005	29	0.047	< 0.0002	< 0.0005	< 0.1	0.021	8.03	< 0.001	0.14	9.4	82	27	384	1.8	< 0.005
bbit bit bit <td>M68-4</td> <td>23/10/2012</td> <td>320</td> <td>< 0.15</td> <td>< 0.001</td> <td>0.086</td> <td>< 2</td> <td>< 0.01</td> <td>< 0.0001</td> <td>120</td> <td>7.7</td> <td>22</td> <td>0.067</td> <td>751</td> <td>0.0011</td> <td>2.5</td> <td>370</td> <td>< 0.1</td> <td>< 0.0005</td> <td>19</td> <td>0.0063</td> <td>< 0.0002</td> <td>< 0.0005</td> <td>< 0.1</td> <td>< 0.01</td> <td>7.67</td> <td>< 0.001</td> <td>3.2</td> <td>0.37</td> <td>21</td> <td>50</td> <td>450</td> <td>3.4</td> <td>< 0.005</td>	M68-4	23/10/2012	320	< 0.15	< 0.001	0.086	< 2	< 0.01	< 0.0001	120	7.7	22	0.067	751	0.0011	2.5	370	< 0.1	< 0.0005	19	0.0063	< 0.0002	< 0.0005	< 0.1	< 0.01	7.67	< 0.001	3.2	0.37	21	50	450	3.4	< 0.005
	M70-3	22/10/2012	320	0.19	< 0.001	0.026	< 2	< 0.01	< 0.0001	160	11	30	< 0.005	1030	0.0014	3.5	540	< 0.1	< 0.0005	32	< 0.002	< 0.0002	< 0.0005	< 0.1	< 0.01	7.8	< 0.001	0.04	0.52	23	190	714	< 0.7	< 0.005
Norme Norme Norme Norme	M80-2	22/10/2012	270	0.19	0.0012	0.059	< 2	0.096	< 0.0001	74	8.4	40	0.008	736	< 0.001	1.6	350	0.73	< 0.0005	41	0.033	< 0.0002	< 0.0005	< 0.1	< 0.01	7.98	< 0.001	0.47	4.4	22	40	448	0.7	< 0.005
matrix symple is col col col col col	M81	23/10/2012	340	< 0.15	< 0.001	0.22	< 2	0.038	< 0.0001	100	1./	51	< 0.005	610	< 0.001	1.5	460	< 0.1	< 0.0005	50	0.028	< 0.0002	< 0.0005	< 0.1	< 0.01	7.73	< 0.001	0.06	2.6	12	42	206	< 0.7	< 0.005
Non- Non- Non- Non- No	M06	23/10/2012	230	< 0.15	< 0.0013	0.058	< 2	0.035	< 0.0001	69	20	25	< 0.026	669	< 0.001	1.0	330	< 0.1	< 0.0005	30	0.0062	< 0.0002	< 0.0005	0.64	< 0.01	7.09	< 0.001	1.5	2.5	20	41	300	< 0.7	< 0.005
1000 2000 100 0.00 0.00 0.00 0.00	M97	22/10/2012	220	< 0.15	0.0015	0.098	< 2	0.17	< 0.0001	22	6.1	5	0.012	517	< 0.001	1.4	220	< 0.1	< 0.0005	39	0.0082	< 0.0002	< 0.0005	< 0.1	< 0.01	9.03	< 0.001	0.57	0.1 2	20	52	204	< 0.7	< 0.005
NMB 2000/2 0.000	M99-2	22/10/2012	220	0.28	0.0015	0.043	< 2	0.072	< 0.0001	66	6.6	28	< 0.002	830	< 0.001	2.0	430	0.75	< 0.0005	64	0.048	< 0.0002	< 0.0005	< 0.1	< 0.01	8.24	< 0.001	0.82	26	19	120	522	< 0.7	< 0.005
Inter Subscription Subscription Subscription	M101	22/10/2012	420	0.18	0.0012	0.16	< 2	0.099	< 0.0001	150	16	78	< 0.005	1170	< 0.001	3.4	590	< 0.1	< 0.0005	54	0.022	< 0.0002	< 0.0005	< 0.1	< 0.01	7.74	< 0.001	0.12	4.9	18	86	720	0.9	< 0.005
NUM 202.02 77 0.90 0.90 0	M102	22/10/2012	400	0.2	< 0.001	0.12	< 2	0.047	< 0.0001	150	9.9	36	< 0.005	979	< 0.001	2.9	490	0.56	< 0.0005	30	0.084	< 0.0002	< 0.0005	< 0.1	< 0.01	7.63	< 0.001	0.11	2.6	27	67	566	< 0.7	< 0.005
OMD ZUNGUN IN IN IN IN IN	M103	22/10/2012	770	0.29	0.0019	0.18	< 2	0.35	< 0.0001	140	17	130	< 0.005	1790	0.0015	5.2	770	0.28	< 0.0005	100	0.021	< 0.0002	< 0.0005	< 0.1	< 0.01	7.72	< 0.001	0.13	8.8	150	42	1020	0.9	0.0083
Intermetient Intermetient<	OW37-s	22/10/2012	170	0.17	< 0.001	0.11	< 2	0.095	< 0.0001	38	8.7	67	< 0.005	558	< 0.001	1.4	180	0.14	< 0.0005	20	0.21	< 0.0002	< 0.0005	< 0.1	< 0.01	7.72	< 0.001	< 0.03	9.8	43	8	274	< 0.7	0.0078
M54 22000 49 10 2000 10 10 10	Intermed	iate BedrockC	Groundwa	ater Flow	Zone																													
bit 2 0 1 2 0 1 0 1 0	M5-3	22/10/2012	430	1.42	< 0.001	0.19	12	1.1	< 0.0001	36	18	38	< 0.005	982	< 0.001	1.4	200	< 0.1	< 0.0005	26	0.0023	< 0.0002	< 0.0005	< 0.1	< 0.01	7.99	0.055	< 0.03	13	140	19	538	1.6	< 0.005
Import 2000 100 100 100 100 100 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 <td>M6-3</td> <td>22/10/2012</td> <td>2000</td> <td>6.1</td> <td>< 0.002</td> <td>1.8</td> <td>< 2</td> <td>0.057</td> <td>< 0.0001</td> <td>990</td> <td>170</td> <td>1200</td> <td>0.021</td> <td>11600</td> <td>0.0074</td> <td>35</td> <td>2500</td> <td>< 0.1</td> <td>0.0014</td> <td>0.094</td> <td>< 0.002</td> <td>< 0.0002</td> <td>< 0.0013</td> <td>< 0.1</td> <td>< 0.01</td> <td>12.5</td> <td>0.015</td> <td>1.1</td> <td>61</td> <td>570</td> <td>< 1</td> <td>4590</td> <td>18</td> <td>< 0.005</td>	M6-3	22/10/2012	2000	6.1	< 0.002	1.8	< 2	0.057	< 0.0001	990	170	1200	0.021	11600	0.0074	35	2500	< 0.1	0.0014	0.094	< 0.002	< 0.0002	< 0.0013	< 0.1	< 0.01	12.5	0.015	1.1	61	570	< 1	4590	18	< 0.005
https 2200202 90 0.00 0.00 0.00 <th< td=""><td>M9-3</td><td>23/10/2012</td><td>250</td><td>1.72</td><td>< 0.001</td><td>0.039</td><td>5</td><td>0.52</td><td>< 0.0001</td><td>40</td><td>12</td><td>69</td><td>< 0.005</td><td>716</td><td>< 0.001</td><td>1.8</td><td>210</td><td>< 0.1</td><td>< 0.0005</td><td>26</td><td>0.022</td><td>< 0.0002</td><td>< 0.0005</td><td>< 0.1</td><td>< 0.01</td><td>7.96</td><td>0.0054</td><td>< 0.03</td><td>14</td><td>72</td><td>15</td><td>378</td><td>1.8</td><td>< 0.005</td></th<>	M9-3	23/10/2012	250	1.72	< 0.001	0.039	5	0.52	< 0.0001	40	12	69	< 0.005	716	< 0.001	1.8	210	< 0.1	< 0.0005	26	0.022	< 0.0002	< 0.0005	< 0.1	< 0.01	7.96	0.0054	< 0.03	14	72	15	378	1.8	< 0.005
IMM 21/02/012 399 112 400 12 2 40 <0.000 2 59 <0.000 2 00000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <t< td=""><td>M10-1</td><td>23/10/2012</td><td>510</td><td>0.7</td><td>0.0016</td><td>0.24</td><td>< 2</td><td>0.34</td><td>< 0.0001</td><td>150</td><td>28</td><td>150</td><td>< 0.005</td><td>1400</td><td>< 0.001</td><td>6.7</td><td>550</td><td>18</td><td>< 0.0005</td><td>40</td><td>0.84</td><td>< 0.0002</td><td>< 0.0005</td><td>< 0.1</td><td>< 0.01</td><td>7.32</td><td>< 0.001</td><td>< 0.03</td><td>6</td><td>76</td><td>15</td><td>810</td><td>1.3</td><td>< 0.005</td></t<>	M10-1	23/10/2012	510	0.7	0.0016	0.24	< 2	0.34	< 0.0001	150	28	150	< 0.005	1400	< 0.001	6.7	550	18	< 0.0005	40	0.84	< 0.0002	< 0.0005	< 0.1	< 0.01	7.32	< 0.001	< 0.03	6	76	15	810	1.3	< 0.005
MSF2 21/02/01 200 0.01 < < 0.00 < 0.00 < 0.00 7.0 0.00 7.0 0.000 0.000 0.000 0.000 0.00 0.00 0.00 0.00 <td>M49-1</td> <td>23/10/2012</td> <td>390</td> <td>1.12</td> <td>< 0.001</td> <td>0.05</td> <td>3</td> <td>0.89</td> <td>< 0.0001</td> <td>12</td> <td>25</td> <td>400</td> <td>< 0.005</td> <td>2140</td> <td>< 0.001</td> <td>2.5</td> <td>59</td> <td>< 0.1</td> <td>< 0.0005</td> <td>6.8</td> <td>0.0087</td> <td>< 0.0002</td> <td>< 0.0005</td> <td>< 0.1</td> <td>< 0.01</td> <td>8.19</td> <td>0.0012</td> <td>0.19</td> <td>8.2</td> <td>450</td> <td>17</td> <td>1150</td> <td>1.5</td> <td>< 0.005</td>	M49-1	23/10/2012	390	1.12	< 0.001	0.05	3	0.89	< 0.0001	12	25	400	< 0.005	2140	< 0.001	2.5	59	< 0.1	< 0.0005	6.8	0.0087	< 0.0002	< 0.0005	< 0.1	< 0.01	8.19	0.0012	0.19	8.2	450	17	1150	1.5	< 0.005
MMS 2300/2012 140 5.0 0.001 7 1.1 < 0.000 1.0 6 0.000 2.90 0.000 2.0000 2.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.0000 <td>M56-2</td> <td>23/10/2012</td> <td>280</td> <td>0.21</td> <td>< 0.001</td> <td>0.18</td> <td>< 2</td> <td>0.074</td> <td>< 0.0001</td> <td>74</td> <td>< 4</td> <td>21</td> <td>< 0.005</td> <td>754</td> <td>< 0.001</td> <td>2</td> <td>370</td> <td>< 0.1</td> <td>< 0.0005</td> <td>45</td> <td>0.055</td> <td>< 0.0002</td> <td>< 0.0005</td> <td>< 0.1</td> <td>< 0.01</td> <td>7.86</td> <td>< 0.001</td> <td>< 0.03</td> <td>3</td> <td>12</td> <td>93</td> <td>448</td> <td>< 0.7</td> <td>< 0.005</td>	M56-2	23/10/2012	280	0.21	< 0.001	0.18	< 2	0.074	< 0.0001	74	< 4	21	< 0.005	754	< 0.001	2	370	< 0.1	< 0.0005	45	0.055	< 0.0002	< 0.0005	< 0.1	< 0.01	7.86	< 0.001	< 0.03	3	12	93	448	< 0.7	< 0.005
M583 23/0/2012 330 < 0.01 < 0.00 0.01 < 2 0.001 0.00 1.0 6 10 c.000 7.4 c.000 0.01 7.4 c.000 7.4 c.000 7.4 c.000 c.001 c.001 c.01 c.010 c.010 <td>M57</td> <td>23/10/2012</td> <td>140</td> <td>5.3</td> <td>0.0062</td> <td>0.017</td> <td>7</td> <td>1.1</td> <td>< 0.0001</td> <td>14</td> <td>18</td> <td>600</td> <td>< 0.005</td> <td>2590</td> <td>< 0.001</td> <td>4.2</td> <td>45</td> <td>< 0.1</td> <td>< 0.0005</td> <td>2.3</td> <td>< 0.002</td> <td>< 0.0002</td> <td>< 0.0005</td> <td>< 0.1</td> <td>0.012</td> <td>8.55</td> <td>0.0011</td> <td>0.08</td> <td>14</td> <td>500</td> <td>120</td> <td>1380</td> <td>6</td> <td>< 0.005</td>	M57	23/10/2012	140	5.3	0.0062	0.017	7	1.1	< 0.0001	14	18	600	< 0.005	2590	< 0.001	4.2	45	< 0.1	< 0.0005	2.3	< 0.002	< 0.0002	< 0.0005	< 0.1	0.012	8.55	0.0011	0.08	14	500	120	1380	6	< 0.005
M593 Z2002012 410 4.1 4.000 0.01 4.0007 4.0007 4.0007 <	M58-3	23/10/2012	330	< 0.15	< 0.001	0.19	< 2	0.015	< 0.0001	110	6	10	< 0.005	744	< 0.001	2.9	380	< 0.1	< 0.0005	27	< 0.002	< 0.0002	< 0.0005	0.16	< 0.01	7.67	< 0.001	< 0.03	1.8	6.6	64	438	< 0.7	< 0.005
M593 Z2102012 20 < <1.05 < <0.00 <0.00 <1.2 0.0005 <0.000 0.0005 <0.000 0.000	M59-2	22/10/2012	410	3.41	< 0.001	0.21	< 2	0.22	< 0.0001	130	43	61	< 0.005	1020	< 0.001	7	480	< 0.1	< 0.0005	38	0.017	< 0.0002	< 0.0005	< 0.1	< 0.01	7.74	0.0069	< 0.03	5.4	34	39	590	0.9	0.0059
MS94 2/10/2012 280 0.77 0.004 0.11 < 2 0.46 < 0.005 61 0.22 0.0005 0.15 0.14 7.95 0.0013 0.07 6.6 1 340 340 1 M701 22/10/2012 300 0.97 0.0005 100 0.005 2 300 2.97 0.0005 0.11 7.95 0.0013 0.07 6.6 100 300 640 100 300 640 100 300 640 100 500 500 100 0.005 2 1000 2 300 100 2.0005 2.0 0.002 0.0005 0.01 0.01 1.01 100 0.01 100 0.01 101 100 110 2.0005 4.0 100 0.01 1.01 100 110 2.0005 4.0 100 0.011 100 11 2.0005 2.0005 2.01 2.0005 2.01 2.0005 2.01 2.0005 2.	M59-3	22/10/2012	230	< 0.15	< 0.001	0.075	< 2	0.023	< 0.0001	110	7.4	21	< 0.005	651	< 0.001	2.6	330	< 0.1	< 0.0005	12	0.0065	< 0.0002	< 0.0005	9.8	< 0.01	7.75	< 0.001	< 0.03	1.2	7.5	33	398	< 0.7	< 0.005
MCM Z2/07/2012 330 2.97 0.005 0.13 3 2.6 0.0005 120 6.0005 17.00 7.5 < 0.0005 2.00 7.51 < 0.0005 4.01 2.00 0.055 4.0 2.000 4.01 2.000 4.00 4.00 4.00 4.00 0.005 4.00 4.00 4.00 4.00 4.00 4.00 7.00 6.000 7.1 6.0005 6.000 6.000 7.0 6.0005 6.000 6.000 6.000 7.0 6.000 6.00 7.0 6.0005 6.00 6.000 6.00 7.0 6.0005 6.000 6.000 6.00 7.0 6.0005 6.000	M59-4	22/10/2012	280	0.77	0.0049	0.11	< 2	0.46	< 0.0001	67	8.8	6	< 0.005	611	< 0.001	2	300	1.9	< 0.0005	33	0.022	< 0.0002	< 0.0005	0.15	0.14	7.95	0.0013	0.07	6.6	16	34	340	1	< 0.005
M1 23/10/2012 560 1.5 < 0.001 0.05 10 0.057 10 0.057 0.000 11 940 2.5 0.005 4.6 0.015 < 0.0002 < 0.0005 < 0.01 7.4 0.0001 7.4 12 13 11 840 2.5 0.015 < 0.0005 < 0.015 < 0.0005 < 0.01 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.01 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.0	M70-1	22/10/2012	330	2.97	0.0055	0.13	3	2.6	< 0.0005	320	62	3300	< 0.005	11100	< 0.005	2	1700	7.5	< 0.0025	220	0.087	< 0.0002	< 0.0005	< 0.1	< 0.01	7.61	< 0.001	0.05	40	2000	360	6840	4	< 0.025
M72 23/10/2012 2/0 0.62 < 0.001 0.15 9 0.38 < 0.0001 5 0.002 < 0.0000 < 0.0001 0.002 < 0.0000 < 0.0001 0.000 0.000 0.000 0.000 0.000 0.0000 < 0.0001 0.000 0.000 0.000	M71	23/10/2012	560	1.75	< 0.001	0.067	10	0.51	< 0.0001	140	40	170	< 0.005	1600	< 0.001	7.1	540	< 0.1	< 0.0005	46	0.015	< 0.0002	< 0.0005	< 0.1	< 0.01	7.47	0.0031	0.14	12	130	11	846	2.5	< 0.005
MA 23/10/2012 340 1.05 0.056 0.006 34 11 13 0.005 648 0.001 23 100 2.00001 2.0001 2.00001 2.0001 2.00001 2.00001 2.0001 2.0001 <td>M72</td> <td>23/10/2012</td> <td>270</td> <td>0.62</td> <td>< 0.001</td> <td>0.15</td> <td>9</td> <td>0.38</td> <td>< 0.0001</td> <td>54</td> <td>15</td> <td>31</td> <td>< 0.005</td> <td>604</td> <td>< 0.001</td> <td>1.1</td> <td>270</td> <td>< 0.1</td> <td>< 0.0005</td> <td>33</td> <td>0.0027</td> <td>< 0.0002</td> <td>< 0.0005</td> <td>< 0.1</td> <td>< 0.01</td> <td>8.12</td> <td>0.055</td> <td>< 0.03</td> <td>7.3</td> <td>17</td> <td>15</td> <td>332</td> <td>0.9</td> <td>< 0.005</td>	M72	23/10/2012	270	0.62	< 0.001	0.15	9	0.38	< 0.0001	54	15	31	< 0.005	604	< 0.001	1.1	270	< 0.1	< 0.0005	33	0.0027	< 0.0002	< 0.0005	< 0.1	< 0.01	8.12	0.055	< 0.03	7.3	17	15	332	0.9	< 0.005
M30 23/10/2012 H40 Codes 9 1.4 Codes 3.7 Codes 4.0 Codes 4.0 Codes 4.0 Codes 4.0 Codes 4.0 Codes 4.0 Codes	N174	23/10/2012	300	2.14	< 0.001	0.069	5	0.96	< 0.0001	21	07	15	< 0.005	1170	< 0.001	1.5	170	< 0.1	< 0.0005	23	0.021	< 0.0002	< 0.0005	< 0.1	< 0.01	7.99 8.02	0.0026	1.2	17	200	28	540 624	1.4	< 0.005
Model 22/10/2012 320 0.00 0.0000 0.000 0.000 <	M80-1	23/10/2012	140	0.48	< 0.001	0.008	9	0.36	< 0.0001	22	23	7	< 0.005	359	< 0.001	4.5	110	< 0.1	< 0.0005	13	0.010	< 0.0002	< 0.0005	< 0.1	< 0.01	7 42	0.035	< 0.03	4.5	32	32	192	< 0.7	< 0.005
Mage: Signed state	M82-1	22/10/2012	320	0.40	< 0.001	0.038	- 2	0.30	< 0.0001	59	14	44	< 0.005	916	< 0.001	3.1	260	0.18	< 0.0005	28	0.0049	< 0.0002	< 0.0005	< 0.1	< 0.01	8.04	0.041	< 0.03	10	97	67	518	1.2	< 0.005
Main	M82-2	22/10/2012	320	0.39	< 0.001	0.13	< 2	0.15	< 0.0001	110	15	32	< 0.005	816	< 0.001	3.7	380	< 0.10	< 0.0005	20	0.019	< 0.0002	< 0.0005	< 0.1	< 0.01	7 86	0.0044	< 0.03	41	21	65	484	1	< 0.005
M95-1 22/10/2012 320 < 0.01 0.11 < 0.00 7.55 < 0.001 1.10 0.100	M91-1	22/10/2012	290	0.78	< 0.001	0.084	3	0.78	< 0.0001	46	6	15	< 0.005	669	< 0.001	1.1	210	< 0.1	< 0.0005	23	0.0057	< 0.0002	< 0.0005	< 0.1	< 0.01	8	< 0.001	< 0.03	7.6	62	40	318	1	< 0.005
M105 23/10/2012 510 0.9 < 0.001 0.23 3 0.37 < 0.001 140 28 190 < 0.005 160 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 <td>M95-1</td> <td>22/10/2012</td> <td>320</td> <td>< 0.15</td> <td>< 0.001</td> <td>0.14</td> <td>< 2</td> <td>0.02</td> <td>< 0.0001</td> <td>120</td> <td>5.9</td> <td>9</td> <td>< 0.005</td> <td>755</td> <td>< 0.001</td> <td>1.9</td> <td>410</td> <td>0.11</td> <td>< 0.0005</td> <td>28</td> <td>0.0033</td> <td>< 0.0002</td> <td>< 0.0005</td> <td>< 0.1</td> <td>< 0.01</td> <td>7.86</td> <td>< 0.001</td> <td>0.03</td> <td>2.3</td> <td>7.3</td> <td>66</td> <td>446</td> <td>< 0.7</td> <td>< 0.005</td>	M95-1	22/10/2012	320	< 0.15	< 0.001	0.14	< 2	0.02	< 0.0001	120	5.9	9	< 0.005	755	< 0.001	1.9	410	0.11	< 0.0005	28	0.0033	< 0.0002	< 0.0005	< 0.1	< 0.01	7.86	< 0.001	0.03	2.3	7.3	66	446	< 0.7	< 0.005
M106 22/10/2012 340 2.45 < 0.002 0.11 31 1.5 < 0.000 110 27 1100 < 0.005 4340 < 0.005 75 0.0024 < 0.005 < 0.01 < 0.005 < 0.003 < 0.002 < 0.005 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.001 < 0.005 < 0.011 < 0.005 < 0.011 < 0.005 </td <td>M105</td> <td>23/10/2012</td> <td>510</td> <td>0.9</td> <td>< 0.001</td> <td>0.23</td> <td>3</td> <td>0.37</td> <td>< 0.0001</td> <td>140</td> <td>28</td> <td>190</td> <td>< 0.005</td> <td>1560</td> <td>< 0.001</td> <td>6.9</td> <td>600</td> <td>< 0.1</td> <td>< 0.0005</td> <td>60</td> <td>0.0092</td> <td>< 0.0002</td> <td>< 0.0005</td> <td>< 0.1</td> <td>< 0.01</td> <td>7.59</td> <td>0.012</td> <td>0.03</td> <td>8.8</td> <td>94</td> <td>15</td> <td>870</td> <td>1.6</td> <td>< 0.005</td>	M105	23/10/2012	510	0.9	< 0.001	0.23	3	0.37	< 0.0001	140	28	190	< 0.005	1560	< 0.001	6.9	600	< 0.1	< 0.0005	60	0.0092	< 0.0002	< 0.0005	< 0.1	< 0.01	7.59	0.012	0.03	8.8	94	15	870	1.6	< 0.005
M107** 23/10/2012 440 0.24 < 0.001 0.096 < 2 0.15 < 0.001 140 23 110 < 0.005 1150 < 0.01 5.8 490 4.4 < 0.005 35 0.33 < 0.002 < 0.05 < 0.1 < 0.01 7.46 < 0.001 < 0.03 3.5 61 15 640 0.9 < 0.005 4.4 = 0.005 4.4 = 0.001 2	M106	22/10/2012	340	2.45	< 0.002	0.11	31	1.5	< 0.0001	110	27	1100	< 0.005	4340	< 0.001	1	590	< 0.1	< 0.0005	75	0.0024	< 0.0002	< 0.0005	< 0.1	< 0.01	7.99	0.063	< 0.03	22	730	27	2460	2.7	< 0.005
	M107**	23/10/2012	440	0.24	< 0.001	0.096	< 2	0.15	< 0.0001	140	23	110	< 0.005	1150	< 0.001	5.8	490	4.4	< 0.0005	35	0.33	< 0.0002	< 0.005	< 0.1	< 0.01	7.46	< 0.001	< 0.03	3.5	61	15	640	0.9	< 0.005
	OW54-d	23/10/2012	270	1.23	< 0.001	0.051	< 2	0.6	< 0.0001	41	5.2	91	< 0.005	823	< 0.001	1.2	220	< 0.1	< 0.0005	28	0.031	< 0.0002	< 0.0005	< 0.1	< 0.01	7.98	< 0.001	< 0.03	12	87	18	458	1.5	< 0.005

* Shallow groundwater monitoring wells not sampled: M29 (purged dry), M39 (dry), M58-4 (damaged below ground surface) [see text for details] ** M107: Originally labelled as M106 in EMP dated June 29, 2010

		Alkalinity	Ammonia	Biochemical Oxygen Demand	Boron	Chemical Oxygen Demand	Chloride	Chromium	Conductivity	Dissolved Organic Carbon	Iron	Manganese	Naphthalene	Phenols	Phosphorus (total)	Potassium	Sodium	Total Dissolved Solids
Name	Date	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Shallow	Groundwater	Flow Zo	ne*						p.,									
RUL		386	-	-	1.27	-	128	0.014	-	3.1	0.18	0.028	-	-	-	-	104	415
M54-4	23/10/2012	410	< 0.15	< 2	0.034	10	67	< 0.005	1000	2	< 0.1	0.0074	< 0.0005	< 0.001	0.12	1.4	53	564
M66-2	23/10/2012	380	0.53	< 2	1.4	< 4	140	< 0.005	1680	5	1.6	0.036	< 0.0005	< 0.001	0.03	10	230	960
M67-2	23/10/2012	360	0.98	< 2	0.83	8	5	0.022	724	2.5	0.4	0.047	< 0.0005	< 0.001	0.14	9.4	82	384
M80-2	22/10/2012	270	0.19	< 2	0.096	8.4	40	0.008	736	1.6	0.73	0.033	< 0.0005	< 0.001	0.47	4.4	22	448
M87-2	23/10/2012	230	< 0.15	< 2	0.035	15	25	0.026	619	1.8	< 0.1	0.0084	< 0.0005	< 0.001	1.3	2.3	17	386
OW37-s	22/10/2012	170	0.17	< 2	0.095	8.7	67	< 0.005	558	1.4	0.14	0.21	< 0.0005	< 0.001	< 0.03	9.8	43	274
Interme	diate BedrockC	Groundwa	ater Flow	v Zone														
RUL		403	-	-	1.3	-	130	0.014	-	3.4	0.18	0.037	-	-	-	-	106	478
M10-1	23/10/2012	510	0.7	< 2	0.34	28	150	< 0.005	1400	6.7	18	0.84	< 0.0005	< 0.001	< 0.03	6	76	810
M49-1	23/10/2012	390	1.12	3	0.89	25	400	< 0.005	2140	2.5	< 0.1	0.0087	< 0.0005	0.0012	0.19	8.2	450	1150
M56-2	23/10/2012	280	0.21	< 2	0.074	< 4	21	< 0.005	754	2	< 0.1	0.055	< 0.0005	< 0.001	< 0.03	3	12	448
M57	23/10/2012	140	5.3	7	1.1	18	600	< 0.005	2590	4.2	< 0.1	< 0.002	< 0.0005	0.0011	0.08	14	500	1380
M58-3	23/10/2012	330	< 0.15	< 2	0.015	6	10	< 0.005	744	2.9	< 0.1	< 0.002	< 0.0005	< 0.001	< 0.03	1.8	6.6	438
M70-1	22/10/2012	330	2.97	3	2.6	62	3300	< 0.005	11100	2	7.5	0.087	< 0.0005	< 0.001	0.05	40	2000	6840
M80-1	22/10/2012	140	0.48	9	0.36	23	7	< 0.005	359	0.8	< 0.1	0.0049	< 0.0005	0.041	< 0.03	4.5	32	192
M82-1	22/10/2012	320	0.87	< 2	0.97	14	44	< 0.005	916	3.1	0.18	0.0066	< 0.0005	0.01	< 0.03	10	97	518
M82-2	22/10/2012	320	0.39	< 2	0.15	15	32	< 0.005	816	3.7	< 0.1	0.019	< 0.0005	0.0044	< 0.03	4.1	21	484
M91-1	22/10/2012	290	0.78	3	0.78	6	15	< 0.005	669	1.1	< 0.1	0.0057	< 0.0005	< 0.001	< 0.03	7.6	62	318
M95-1	22/10/2012	320	< 0.15	< 2	0.02	5.9	9	< 0.005	755	1.9	0.11	0.0033	< 0.0005	< 0.001	0.03	2.3	7.3	446
M107**	23/10/2012	440	0.24	< 2	0.15	23	110	< 0.005	1150	5.8	4.4	0.33	< 0.005	< 0.001	< 0.03	3.5	61	640

* Shallow groundwater monitoring wells not sampled: M29 (purged dry), M39 (dry), M58-4 (damaged below ground surface) [see text for details] ** M107: Originally labelled as M106 in EMP dated June 29, 2010

Groundwater results exceed Reasonable Use Limits (RUL)

Total Kjeldahl Nitrogen	Zinc
mg/L	mg/L
-	-
< 0.7	0.0081
0.7	0.0082
1.8	< 0.005
0.7	< 0.005
< 0.7	< 0.005
< 0.7	0.0078
-	-
1.3	< 0.005
1.5	< 0.005
< 0.7	< 0.005
6	< 0.005
< 0.7	< 0.005
4	< 0.025
< 0.7	< 0.005
1.2	< 0.005
1	< 0.005
1	< 0.005
< 0.7	< 0.005
0.9	< 0.005

Increanic and General Parameters Yes Yes <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>											
Inorganic and General Parameters Alkalinity (as CaCO3) mg/L 30-500 OG 280 500 330 440 530 360 450 Ammonia mg/L 0.025 IMAC < 0.011			Dowsoc		1121 Beechwood Rd	1144 Beechwood Rd	1181 Beechwood Rd	1206 Beechwood Rd	1250 Beechwood Rd	1252 Beechwood Rd	1264 Beechwood Rd
Alkalinity (as CaCO3) mg/L 30-500 OG 280 500 330 440 530 360 450 Ammonia mg/L < < < 0.15 1.08 2.94 0.23 0.55 0.29 0.94 Arsenic mg/L 0.025 IMAC <0.001 <0.001 0.001 0.0023 <0.001 <0.001 Barium mg/L 1 MAC 0.08 0.03 0.12 0.12 0.28 0.19 0.12 Biochemical Oxygen Demand mg/L 5 IMAC 0.033 0.38 1.1 0.06 0.14 0.15 0.55 Gadmium mg/L 0.005 IMAC 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 MAC <td< th=""><th>Inorganic and General Parameters</th><th>;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Inorganic and General Parameters	;									
Ammoniamg/L<<<<0.151.082.940.230.550.290.94Arsenicmg/L0.025IMAC<0.001	Alkalinity (as CaCO3)	mg/L	30-500	OG	280	500	330	440	530	360	450
Arsenic mg/L 0.025 IMAC < 0.001 < 0.001 0.0011 0.0023 < 0.001 < 0.001 Barium mg/L 1 MAC 0.08 0.03 0.12 0.12 0.28 0.19 0.12 Boron mg/L <	Ammonia	mg/L			< 0.15	1.08	2.94	0.23	0.55	0.29	0.94
Barlummg/L1MAC0.080.030.120.120.280.190.12Biochemical Oxygen Demandmg/L<	Arsenic	mg/L	0.025	IMAC	< 0.001	< 0.001	< 0.001	0.0011	0.0023	< 0.001	< 0.001
Biochemical Oxygen Demandmg/L<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< </td <td>Barium</td> <td>mg/L</td> <td>1</td> <td>MAC</td> <td>0.08</td> <td>0.03</td> <td>0.12</td> <td>0.12</td> <td>0.28</td> <td>0.19</td> <td>0.12</td>	Barium	mg/L	1	MAC	0.08	0.03	0.12	0.12	0.28	0.19	0.12
Boronmg/L5IMAC 0.033 0.38 1.1 0.06 0.14 0.15 0.55 Cadmiummg/L 0.005 IMAC 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	Biochemical Oxygen Demand	mg/L			< 2	3	10	< 2	< 2	< 2	3
Cadmiummg/L 0.005 IMAC 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0002 < 0.0002 < 0.0002 < 0.0002 <	Boron	mg/L	5	IMAC	0.033	0.38	1.1	0.06	0.14	0.15	0.55
Calciummg/L9615096190200130150Chemical Oxygen Demandmg/L Mg/L 9.3253416271325Chloridemg/L250AO25120 460 10015065 350 Chromiummg/L0.05MAC<0.005	Cadmium	mg/L	0.005	IMAC	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chemical Oxygen Demand mg/L 9.3 25 34 16 27 13 25 Chloride mg/L 250 AO 25 120 460 100 150 65 350 Chromium mg/L 0.05 MAC < 0.005	Calcium	mg/L			96	150	96	190	200	130	150
Chloridemg/L250AO2512046010015065350Chromiummg/L0.05MAC< 0.005	Chemical Oxygen Demand	mg/L			9.3	25	34	16	27	13	25
Chromiummg/L0.05MAC< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.005< 0.00	Chloride	mg/L	250	AO	25	120	460	100	150	65	350
Conductivity μ S/cm73813102180119014709502000Coppermg/L1AO0.0025< 0.001	Chromium	mg/L	0.05	MAC	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Coppermg/L1AO 0.0025 < 0.001 0.24 0.13 0.0026 0.0081 0.0045 Dissolved Organic Carbonmg/L5AO 1.3 5.3 2.5 3.9 7.1 2.1 4.9 Hardness (as CaCO3)mg/L80-100OG 370 530 440 520 630 420 590 Ironmg/L 0.3 AO 0.13 0.2 1.3 3.6 22 8.8 6.9 Leadmg/L 0.01 MAC < 0.0005 0.0044 0.011 < 0.0005 0.0018 < 0.0005 Magnesiummg/L 0.01 MAC < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002	Conductivity	μ\$/cm			738	1310	2180	1190	1470	950	2000
Dissolved Organic Carbonmg/L5AO1.35.32.53.97.12.14.9Hardness (as CaCO3)mg/L80-100OG 370 530 440 520630 420 590Ironmg/L0.3AO0.130.21.33.6 22 8.86.9Leadmg/L0.01MAC<0.0005	Copper	mg/L	1	AO	0.0025	< 0.001	0.24	0.13	0.0026	0.0081	0.0045
Hardness (as CaCO3) mg/L 80-100 OG 370 530 440 520 630 420 590 Iron mg/L 0.3 AO 0.13 0.2 1.3 3.6 22 8.8 6.9 Lead mg/L 0.01 MAC <0.0005	Dissolved Organic Carbon	mg/L	5	AO	1.3	5.3	2.5	3.9	7.1	2.1	4.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Hardness (as CaCO3)	mg/L	80-100	OG	370	530	440	520	630	420	590
Leadmg/L0.01MAC< 0.0005< 0.00050.0140.011< 0.00050.0018< 0.0005Magnesiummg/L38485930393455Manganesemg/L0.05AO0.0440.00380.010.651.50.290.37Mercurymg/L0.001MAC< 0.0002	Iron	mg/L	0.3	AO	0.13	0.2	1.3	3.6	22	8.8	6.9
Magnesium mg/L 38 48 59 30 39 34 55 Manganese mg/L 0.05 AO 0.044 0.0038 0.01 0.65 1.5 0.29 0.37 Mercury mg/L 0.001 MAC <0.0022	Lead	mg/L	0.01	MAC	< 0.0005	< 0.0005	0.014	0.011	< 0.0005	0.0018	< 0.0005
Manganese mg/L 0.05 AO 0.044 0.0038 0.01 0.65 1.5 0.29 0.37 Mercury mg/L 0.001 MAC < 0.0002	Magnesium	mg/L			38	48	59	30	39	34	55
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Manganese	mg/L	0.05	AO	0.044	0.0038	0.01	0.65	1.5	0.29	0.37
Naphthalene mg/L 10 MAC < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0015 < 0.01 < 0.01 0.23 < 0.1 Nitrite mg/L 1 MAC < 0.01	Mercury	mg/L	0.001	MAC	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Nitrate mg/L 10 MAC 1 < 0.1 < 0.1 0.65 < 0.1 0.23 < 0.1 Nitrite mg/L 1 MAC < 0.01	Naphthalene	mg/L	10	MAC	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0025	< 0.0005
Nitrite mg/L 1 MAC < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	Nitrate	mg/L	10	MAC	1	< 0.1	< 0.1	0.65	< 0.1	0.23	< 0.1
pH (Lab) unitless 6.5-8.5 OG 7.89 7.66 7.75 7.67 7.33 7.65 7.66 Phenols mg/L < 0.001	Nitrite	mg/L	1	MAC	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.015	< 0.01
Phenols mg/L < 0.001 0.005 0.024 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0	pH (Lab)	unitless	6.5-8.5	OG	7.89	7.66	7.75	7.67	7.33	7.65	7.66
Phosphorus (total) mg/L < 0.06 < 0.03 0.12 0.33 < 0.03 < 0.06 Potaccium mg/L 2.8 12 20 6.6 4.7 4 10	Phenols	mg/L			< 0.001	0.005	0.024	< 0.001	< 0.001	< 0.001	< 0.001
	Phosphorus (total)	mg/L			< 0.06	< 0.03	0.12	0.33	< 0.03	< 0.03	< 0.06
	Potassium	mg/L			2.8	12	20	6.6	4.7	4	10
Sodium mg/L 200 20 AO (see note) 18 94 280 56 69 51 330	Sodium	mg/L	200 20	AO (see note)	18	94	280	56	69	51	330
Sulphate mg/L 500 AO 71 22 21 36 17 46 7	Sulphate	mg/L	500	AO	71	22	21	36	17	46	7
Total Dissolved Solids mg/L 500 AO 436 722 1190 674 796 478 1090	Total Dissolved Solids	mg/L	500	AO	436	722	1190	674	796	478	1090
Total Kjeldahl Nitrogen mg/L < 0.7 1.7 3.4 0.7 1.1 < 0.7 1.6	Total Kjeldahl Nitrogen	mg/L		İ	< 0.7	1.7	3.4	0.7	1.1	< 0.7	1.6
	Zinc	mg/L	5	AO	0.049	< 0.005	0.036	0.096	0.057	0.021	0.066

		ODWSOG		1121 Beechwood Rd	1144 Beechwood Rd	1181 Beechwood Rd	1206 Beechwood Rd	1250 Beechwood Rd	1252 Beechwood Rd	1264 Beechwood Rd
Volatile Organic Compounds (VC	DC)									
1112-Tetrachloroethane	mg/l			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
1 1 1-Trichloroethane	mg/l			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.031	< 0.0001
1122-Tetrachloroethane	mg/l			< 0.0001	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
1 1 2-Trichloroethane	mg/l			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
1 1-Dichloroethane	mg/l			< 0.0002	< 0.0002	< 0.0002	0.00011	0.0042	0.071	< 0.0002
1 1-Dichloroethylene	mg/l	0.014	MAC	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00019	0.0088	0.00027
1.2-Dibromoethane	mg/L	0.014	Miric	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.00013	< 0.001	< 0.00021
1,2-Dichlorobenzene (o)	mg/l	0.2	MAC	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
1.2-Dichloroethane	mg/L	0.005	IMAC	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
1.2-Dichloropropane	mg/l	0.000		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
1 3 5-Trimethylbenzene	mg/l			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
1.3-Dichlorobenzene (m)	mg/L			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
1,4-Dichlorobenzene (p)	mg/L	0.005 0.001	MAC AO	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
Benzene	mg/L	0.005	MAC	< 0.0001	< 0.0001	0.00017	< 0.0001	< 0.0001	< 0.0005	0.00092
Bromodichloromethane	mg/L			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Bromoform	mg/L			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
Bromomethane	mg/L			< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0025	< 0.0005
Carbon Tetrachloride	mg/L	0.005	MAC	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Chlorobenzene	mg/L			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Chloroethane	mg/L			< 0.0002	0.00039	< 0.0002	< 0.0002	0.0031	0.013	0.01
Chloroform	mg/L			0.00042	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Chloromethane	mg/L			< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0025	< 0.0005
Cis-1,2-Dichloroethylene	mg/L			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Cis-1,3-Dichloropropylene	mg/L			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
Dichloromethane	mg/L	0.05	MAC	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0025	< 0.0005
Ethylbenzene	mg/L	0.0024	AO	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
m+p-Xylene	mg/L			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
o-Xylene	mg/L			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Styrene	mg/L			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
Tetrachloroethylene	mg/L	0.03	MAC	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Toluene	mg/L	0.024	AO	< 0.0002	< 0.0002	0.0004	< 0.0002	< 0.0002	< 0.001	< 0.0002
Total Xylenes	mg/L	0.3	AO	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Trans-1,2-dichloroethylene	mg/L			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Trans-1,3-dichloropropene	mg/L			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
Trichloroethylene	mg/L	0.005	MAC	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0005	< 0.0001
Trichlorofluoromethane	mg/L			< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002
Vinyl Chloride	mg/L	0.002	MAC	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	< 0.0002

Below Reportable Detection Limit Exceeds PWQO

ODWSOG: Ontario Drinking Water Objective Standards and Guidelines

OG: Operational Guidelines

MAC: Maximum Acceptable Concentration

IMAC: Interim Maximum Acceptable Concentration

AO: Asthetic Objectives

Note: The aesthetic objective for sodium in drinking water is 200 mg/L. The local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

Table 7: Surface Water Characteristics - October 24, 2012

Data	Paramotor		Surface Water Station									
Date	Farameter		S2	S3	S4R	S5	S6	S7*	S8R			
	Velocity:	m/s	NM	NM	DRY	DRY	NM	NM	DRY			
	Depth:	m	0.13	0.60	0.64	0.10	0.14	0.19	0.06			
23-Apr-12	Width:	m	1.53	0.12	1.15	2.00	1.50	3.50	0.74			
	Estimated Flow Rate:	m³/s	NM	NM	DRY	DRY	NM	NM	DRY			

* \$7: no flow observed (standing water)

NM: Not Measured (flow was insufficient to register on the flow meter - very small flow observed)

				Marvsvil	le Creek		Beechwood Ditch			
			\$2	\$3	S6	\$7	\$5	S4R	S8R	
			(upstream)	(downstream)	(downstream)	(downstream)	(upstream)	(downstream)	(downstream)	
		Date	24/10/2012	24/10/2012	24/10/2012	24/10/2012	24/10/2012	24/10/2012	24/10/2012	
Reading Name	Units	PWOO					DRY	DRY	DRY	
Inorganic and General Parameters	1 1			ļ						
Alkalinity	mg/L		230	200	130	170				
Ammonia	mg/L		< 0.15	< 0.15	< 0.15	< 0.15				
Ammonia (unionized)	mg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02				
Arsenic	mg/L	0.1	< 0.001	< 0.001	< 0.001	< 0.001				
Barium	mg/L		0.069	0.11	0.057	0.099				
Biochemical Oxygen Demand	mg/L		8	< 2	2	< 2				
Boron	mg/L	0.2	< 0.02	0.055	0.044	0.032				
Cadmium	mg/L	0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001				
Calcium	mg/L		90	95	65	88				
Chemical Oxygen Demand	mg/L		34	27	34	36				
Chloride	mg/L		13	63	37	31				
Chromium	mg/L	0.01	< 0.005	< 0.005	< 0.005	< 0.005				
Conductivity	μS/cm		540	753	500	566				
Copper	mg/L	0.005	0.002	0.003	0.004	0.004				
Cyanide (free)	mg/L	0.005	< 0.002	< 0.002	< 0.002	< 0.002				
Hardness	mg/L		270	310	200	270				
Iron	mg/L	0.3	< 0.1	0.81	< 0.1	1.2				
Lead	mg/L	0.025	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
Magnesium	mg/L		13	17	11	14				
Mercury	mg/L	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002				
Naphthalene	mg/L	0.007	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
Nitrate	mg/L		< 0.1	< 0.1	< 0.1	< 0.1				
Nitrate + Nitrite	mg/L		< 0.1	< 0.1	< 0.1	< 0.1				
Nitrite	mg/L		< 0.01	< 0.05	< 0.01	< 0.01				
Phenols	mg/L	0.001	0.0028	< 0.001	< 0.001	0.0013				
Phosphorus (total)	mg/L	0.03	0.052	0.058	0.079	0.12				
Potassium	mg/L		2.9	8.3	5.3	5.6				
Sodium	mg/L		9.7	41	19	15				
Sulphate	mg/L		37	80	49	64				
Total Dissolved Solids	mg/L		324	466	324	332				
Total Kjeldahl Nitrogen	mg/L		1.5	1	1.3	1.6				
Total Suspended Solids	mg/L		< 1	76	31	10				
Zinc	mg/L	0.03	0.014	0.012	< 0.01	0.011				
Field Measured			-							
Conductivity (Field)	μ\$/cm									
Dissoved Oxygen (Field)	mg/L									
pH (Field)	unitless	6.5-8.5	6.82	7.21	6.95	6.98				
Temperature (Field)	℃		9.73	9.38	9.20	8.40				

Below Reportable Detection Limit Exceeds PWQO

Table 9: Subsurface Gas Monitoring Results - October 24, 2012

Gas Monitor	Location	Reading (ppm)
CM1	North of garage area, south	0
0/WI	of waste mound	0
CM3	North-east corner of waste	15
CMD	mound	15
GM4-1	South-east corner of waste	0
GM4-2	mound	5
C.M5	North-west corner of waste	0
000	mound	0
GM6	North of waste mound	5

FIGURES

Project : K-B10300-00-04 Data Source: WM Canada, WESA, HPA Ltd. Base Mapping 2009

0 12.5 25 50 75 100 Meters Prepared by: WESA Geomatics

Units: UTM NAD 83 Zone 18 Scale: 1:5000

APPENDIX A

Results from Analytical Quality Assurance / Quality Control (QA/QC) Program

APPENDIX A - RESULTS FROM QUALITY ASSURANCE / QUALITY CONTROL (QA/QC) PROGRAM

Summary of Results with Relative Percent Difference (RPD¹) greater than 20%

Well	Parameter	Unit	Regular Sample	Field Duplicate	RPD (%)	MDL ²	Comment
OW54-D	Chemical Oxygen Demand	mg/L	5.2	12	79.07	4	Less than ~5 x MDL
OW54-D	Dissolved Organic Carbon	mg/L	1.2	1.9	45.16	0.2	
S3	Aluminum	mg/L	0.4	0.61	41.58	0.02	
S3	Chemical Oxygen Demand	mg/L	27	22	20.41	4	
S3	Iron	mg/L	0.81	1.2	38.81	0.1	
S3	Manganese	mg/L	0.16	0.25	43.90	0.002	
S3	Phosphorus (total)	mg/L	0.058	0.015	117.81	0.002	
S3	Titanium	mg/L	0.024	0.036	40.00	0.005	Less than ~5 x MDL
S3	Total Kjeldahl Nitrogen	mg/L	1	0.8	22.22	0.7	Less than ~5 x MDL
S3	Total Suspended Solids	mg/L	76	26	98.04	1	
S3	Vanadium	mg/L	0.004	0.002	66.67	0.001	Less than ~5 x MDL

Note 1: RPD (%) = 100 * ABS (Regular Sample - Duplicate Sample) / ([Regular Sample + Duplicate Sample] / 2] Note 2: MDL = Laboratory Method Detection Limit

Detailed Results from Field	Duplicate vs.	Regular Samples	- Fall 2012
-----------------------------	---------------	------------------------	-------------

		M82-2 (Regular	DUP1-F12 (Field	
Parameter	Unit	Sample)	Duplicate)	RPD (%)
Alkalinity	mg/L	320	320	0.00
Ammonia	mg/L	0.39	0.39	0.00
Arsenic	mg/L	< 0.001	< 0.001	0.00
Barium	mg/L	0.13	0.14	7.41
Biochemical Oxygen Demand	mg/L	<2	<2	0.00
Boron	mg/L	0.15	0.16	6.45
Cadmium	mg/L	< 0.0001	< 0.0001	0.00
Calcium	mg/L	110	120	8.70
Chemical Oxygen Demand	mg/L	15	14	6.90
Chloride	mg/L	32	32	0.00
Chromium	mg/L	<0.005	< 0.005	0.00
Conductivity	μS/cm	816	817	0.12
Copper	mg/L	<0.001	< 0.001	0.00
Dissolved Organic Carbon	mg/L	3.7	3.5	5.56
Hardness	mg/L	380	410	7.59
Iron	mg/L	<0.1	<0.1	0.00
Lead	mg/L	<0.0005	< 0.0005	0.00
Magnesium	mg/L	28	29	3.51
Manganese	mg/L	0.019	0.02	5.13
Mercury	mg/L	<0.0002	< 0.0002	0.00
Naphthalene	mg/L	<0.0005	<0.0005	0.00
Nitrate	mg/L	<0.1	<0.1	0.00
Nitrite	mg/L	<0.01	<0.01	0.00
Phenols	mg/L	0.0044	0.0041	7.06
Phosphorus (total)	mg/L	<0.03	<0.03	0.00
Potassium	mg/L	4.1	4.3	4.76
Sodium	mg/L	21	23	9.09
Sulphate	mg/L	65	66	1.53
Total Dissolved Solids	mg/L	484	488	0.82
Total Kjeldahl Nitrogen	mg/L	1	<0.7	0.00
Zinc	mg/L	< 0.005	< 0.005	0.00

APPENDIX A - RESULTS FROM QUALITY ASSURANCE / QUALITY CONTROL (QA/QC) PROGRAM

		M56-2 (Regular	DUP 2-F12 (Field	
Parameter	Unit	Sample)	Duplicate)	RPD (%)
Alkalinity	mg/L	280	280	0.00
Ammonia	mg/L	0.21	0.19	10.00
Arsenic	mg/L	<0.001	<0.001	0.00
Barium	mg/L	0.18	0.18	0.00
Biochemical Oxygen Demand	mg/L	<2	<2	0.00
Boron	mg/L	0.074	0.085	13.84
Cadmium	mg/L	< 0.0001	< 0.0001	0.00
Calcium	mg/L	74	75	1.34
Chemical Oxygen Demand	mg/L	<4	9.5	0.00
Chloride	mg/L	21	21	0.00
Chromium	mg/L	<0.005	< 0.005	0.00
Conductivity	μS/cm	754	755	0.13
Copper	mg/L	< 0.001	< 0.001	0.00
Dissolved Organic Carbon	mg/L	2	1.8	10.53
Hardness	mg/L	370	370	0.00
Iron	mg/L	<0.1	<0.1	0.00
Lead	mg/L	<0.0005	<0.0005	0.00
Magnesium	mg/L	45	45	0.00
Manganese	mg/L	0.055	0.055	0.00
Mercury	mg/L	<0.0002	<0.0002	0.00
Naphthalene	mg/L	<0.0005	<0.0005	0.00
Nitrate	mg/L	<0.1	<0.1	0.00
Nitrite	mg/L	<0.01	<0.01	0.00
Phenols	mg/L	<0.001	< 0.001	0.00
Phosphorus (total)	mg/L	<0.03	< 0.03	0.00
Potassium	mg/L	3	3.1	3.28
Sodium	mg/L	12	12	0.00
Sulphate	mg/L	93	91	2.17
Total Dissolved Solids	mg/L	448	448	0.00
Total Kjeldahl Nitrogen	mg/L	<0.7	<0.7	0.00
Zinc	mg/L	<0.005	< 0.005	0.00

Detailed Results from Field Duplicate vs. Regular Samples - Fall 2012 (continued)

		M107 (Regular	DUP 3-F12 (Field	
Parameter	Unit	Sample)	Duplicate)	RPD (%)
Alkalinity	mg/L	440	440	0.00
Ammonia	mg/L	0.24	0.23	4.26
Arsenic	mg/L	<0.001	<0.001	0.00
Barium	mg/L	0.096	0.094	2.11
Biochemical Oxygen Demand	mg/L	<2	<2	0.00
Boron	mg/L	0.15	0.15	0.00
Cadmium	mg/L	< 0.0001	<0.0001	0.00
Calcium	mg/L	140	140	0.00
Chemical Oxygen Demand	mg/L	23	19	19.05
Chloride	mg/L	110	100	9.52
Chromium	mg/L	<0.005	<0.005	0.00
Conductivity	μS/cm	1150	1150	0.00
Copper	mg/L	<0.001	< 0.001	0.00
Dissolved Organic Carbon	mg/L	5.8	5.9	1.71
Hardness	mg/L	490	480	2.06
Iron	mg/L	4.4	4.3	2.30
Lead	mg/L	<0.0005	<0.0005	0.00
Magnesium	mg/L	35	35	0.00
Manganese	mg/L	0.33	0.32	3.08
Mercury	mg/L	< 0.0002	<0.0002	0.00
Naphthalene	mg/L	<0.005	<0.0005	0.00
Nitrate	mg/L	<0.1	<0.1	0.00
Nitrite	mg/L	<0.01	<0.01	0.00
Phenols	mg/L	< 0.001	<0.001	0.00
Phosphorus (total)	mg/L	<0.03	<0.03	0.00
Potassium	mg/L	3.5	3.4	2.90
Sodium	mg/L	61	60	1.65
Sulphate	mg/L	15	16	6.45
Total Dissolved Solids	mg/L	640	638	0.31
Total Kjeldahl Nitrogen	mg/L	0.9	0.9	0.00
Zinc	mg/L	<0.005	< 0.005	0.00

Detailed Results from Field Duplicate vs. Regular Samples - Fall 2012 (continued)

APPENDIX A - RESULTS FROM QUALITY ASSURANCE / QUALITY CONTROL (QA/QC) PROGRAM

		OW54-D	DUP4-F12 (Field	
Parameter	Unit	(Regular Sample)	Duplicate)	RPD (%)
Alkalinity	mg/L	270	280	3.64
Ammonia	mg/L	1.23	1.25	1.61
Arsenic	mg/L	<0.001	<0.001	0.00
Barium	mg/L	0.051	0.048	6.06
Biochemical Oxygen Demand	mg/L	<2	<2	0.00
Boron	mg/L	0.6	0.59	1.68
Cadmium	mg/L	<0.0001	<0.0001	0.00
Calcium	mg/L	41	39	5.00
Chemical Oxygen Demand	mg/L	5.2	12	79.07
Chloride	mg/L	91	90	1.10
Chromium	mg/L	<0.005	<0.005	0.00
Conductivity	μS/cm	823	826	0.36
Copper	mg/L	< 0.001	< 0.001	0.00
Dissolved Organic Carbon	mg/L	1.2	1.9	45.16
Hardness	mg/L	220	210	4.65
Iron	mg/L	<0.1	<0.1	0.00
Lead	mg/L	<0.0005	<0.0005	0.00
Magnesium	mg/L	28	26	7.41
Manganese	mg/L	0.031	0.031	0.00
Mercury	mg/L	<0.0002	<0.0002	0.00
Naphthalene	mg/L	<0.0005	<0.0005	0.00
Nitrate	mg/L	<0.1	<0.1	0.00
Nitrite	mg/L	<0.01	<0.01	0.00
Phenols	mg/L	<0.001	<0.001	0.00
Phosphorus (total)	mg/L	<0.03	< 0.03	0.00
Potassium	mg/L	12	12	0.00
Sodium	mg/L	87	84	3.51
Sulphate	mg/L	18	18	0.00
Total Dissolved Solids	mg/L	458	436	4.92
Total Kjeldahl Nitrogen	mg/L	1.5	1.6	6.45
Zinc	mg/L	< 0.005	< 0.005	0.00

Detailed Results from Field Duplicate vs. Regular Samples - Fall 2012 (continued)

	e			/ n
Detailed Results 1	from Field Duplicate v	s. Regular Samples	- Fall 2012	(continued)

		S3 (Regular	DUP5-F12 (Field	
Parameter	Unit	Sample)	Duplicate)	RPD (%)
Alkalinity	mg/L	200	210	4.88
Aluminum	mg/L	0.4	0.61	41.58
Ammonia	mg/L	<0.15	<0.15	0.00
Ammonia (unionized)	mg/L	<0.02	<0.02	0.00
Antimony	mg/L	<0.001	<0.001	0.00
Arsenic	mg/L	<0.001	<0.001	0.00
Barium	mg/L	0.11	0.12	8.70
Beryllium	mg/L	<0.0006	<0.0006	0.00
Biochemical Oxygen Demand	mg/L	<2	<2	0.00
Boron	mg/L	0.055	0.053	3.70
Cadmium	mg/L	<0.0001	<0.0001	0.00
Calcium	mg/L	95	96	1.05
Chemical Oxygen Demand	mg/L	27	22	20.41
Chloride	mg/L	63	64	1.57
Chromium	mg/L	<0.005	< 0.005	0.00
Cobalt	mg/L	0.0005	0.0006	18.18
Conductivity	μS/cm	753	756	0.40
Copper	mg/L	0.003	0.003	0.00
Cyanide (free)	mg/L	< 0.002	<0.002	0.00
Hardness	mg/L	310	310	0.00
Iron	mg/L	0.81	1.2	38.81
Lead	mg/L	< 0.0005	0.0006	0.00
Magnesium	mg/L	17	17	0.00
Manganese	mg/L	0.16	0.25	43.90
Mercury	mg/L	< 0.0002	<0.0002	0.00
Molybdenum	mg/L	<0.002	< 0.002	0.00
Naphthalene	mg/L	<0.0005	<0.0005	0.00
Nickel	mg/L	< 0.001	0.001	0.00
Nitrate	mg/L	<0.1	<0.1	0.00
Nitrite	mg/L	<0.05	< 0.01	0.00
Phenols	mg/L	< 0.001	< 0.001	0.00
Phosphorus (total)	mg/L	0.058	0.015	117.81
Potassium	mg/L	8.3	8.3	0.00
Selenium	mg/L	<0.005	<0.005	0.00
Silver	mg/L	< 0.0004	< 0.0004	0.00
Sodium	mg/L	41	41	0.00
Strontium	mg/L	0.78	0.78	0.00
Sulphate	mg/L	80	80	0.00
Thallium	mg/L	<0.0002	<0.0002	0.00
Tin	mg/L	<0.002	< 0.002	0.00
Titanium	mg/L	0.024	0.036	40.00
Total Dissolved Solids	mg/L	466	472	1.28
Total Kieldahl Nitrogen	mg/l	1	0.8	22.22
Total Suspended Solids	mg/l	76	26	98.04
Uranium	mg/I	0.0013	0.0012	8.00
Vanadium	mg/l	0.004	0.002	66.67
Zinc	mg/l	0.012	<0.01	0.00
		0.012	,0.01	0.00

Detailed Results from Field Blank Sample - Fall 2012

		Field Blank
Reading Name	Units	2012-10-22
Alkalinity	mg/L	1.5
Ammonia	mg/L	< 0.15
Arsenic	mg/L	< 0.001
Barium	mg/L	< 0.002
Biochemical Oxygen Demand	mg/L	< 2
Boron	mg/L	< 0.01
Cadmium	mg/L	< 0.0001
Calcium	mg/L	< 0.2
Chemical Oxygen Demand	mg/L	5
Chloride	mg/L	< 1
Chromium	mg/L	< 0.005
Conductivity	μS/cm	1
Copper	mg/L	< 0.001
Dissolved Organic Carbon	mg/L	0.3
Hardness	mg/L	< 1
Iron	mg/L	< 0.1
Lead	mg/L	< 0.0005
Magnesium	mg/L	0.052
Manganese	mg/L	< 0.002
Mercury	mg/L	< 0.0002
Naphthalene	mg/L	< 0.0005
Nitrate	mg/L	< 0.1
Nitrate + Nitrite	mg/L	< 0.1
Nitrite	mg/L	< 0.01
pH (Lab)	unitless	6.26
Phenols	mg/L	< 0.001
Phosphorus (total)	mg/L	< 0.03
Potassium	mg/L	< 0.2
Sodium	mg/L	< 0.1
Sulphate	mg/L	< 1
Total Dissolved Solids	mg/L	< 10
Total Kjeldahl Nitrogen	mg/L	< 0.7
Zinc	mg/L	< 0.005

Detailed Results from Trip Blank Sample - Fall 2012

		Trip Blank
Reading Name	Units	2012-10-23
Alkalinity	mg/L	1.4
Ammonia	mg/L	< 0.15
Arsenic	mg/L	< 0.001
Barium	mg/L	< 0.002
Biochemical Oxygen Demand	mg/L	< 2
Boron	mg/L	< 0.01
Cadmium	mg/L	< 0.0001
Calcium	mg/L	< 0.2
Chemical Oxygen Demand	mg/L	9
Chloride	mg/L	< 1
Chromium	mg/L	< 0.005
Conductivity	μS/cm	1
Copper	mg/L	< 0.001
Dissolved Organic Carbon	mg/L	< 0.2
Hardness	mg/L	< 1
Iron	mg/L	< 0.1
Lead	mg/L	< 0.0005
Magnesium	mg/L	< 0.05
Manganese	mg/L	< 0.002
Mercury	mg/L	< 0.0002
Naphthalene	mg/L	< 0.0005
Nitrate	mg/L	< 0.1
Nitrate + Nitrite	mg/L	< 0.1
Nitrite	mg/L	< 0.01
pH (Lab)	unitless	6.63
Phenols	mg/L	< 0.001
Phosphorus (total)	mg/L	< 0.03
Potassium	mg/L	< 0.2
Sodium	mg/L	< 0.1
Sulphate	mg/L	< 1
Total Dissolved Solids	mg/L	< 10
Total Kjeldahl Nitrogen	mg/L	< 0.7
Zinc	mg/L	< 0.005

Detailed Results from Field Blank Sample - Spring 2012

Deading Name	Unite	Field Blank
	Units	2012-10-24
Alkalinity	mg/L	1.1
	mg/L	< 0.02
Ammonia	mg/L	< 0.15
Antimony	mg/L	< 0.001
Arsenic	mg/L	< 0.001
Barium	mg/L	< 0.005
Beryllium	mg/L	< 0.0006
Biochemical Oxygen Demand	mg/L	< 2
Boron	mg/L	< 0.02
Cadmium	mg/L	< 0.0001
Calcium	mg/L	< 0.2
Chemical Oxygen Demand	mg/L	< 4
Chloride	mg/L	< 1
Chromium	mg/L	< 0.005
Cobalt	mg/L	< 0.0005
Conductivity	μS/cm	1
Copper	mg/L	< 0.002
Cyanide (free)	mg/L	< 0.002
Hardness	mg/L	< 1
Iron	mg/L	< 0.1
Lead	mg/L	< 0.0005
Magnesium	mg/L	< 0.05
Manganese	mg/L	< 0.002
Mercury	mg/L	< 0.0002
Molybdenum	mg/L	< 0.002
Nickel	mg/L	< 0.001
Nitrate	mg/L	< 0.1
Nitrate + Nitrite	mg/L	< 0.1
Nitrite	mg/L	< 0.01
Phenols	mg/L	< 0.001
Phosphorus (total)	mg/L	< 0.002
Potassium	mg/L	< 0.2
Selenium	mg/L	< 0.005
Silver	mg/L	< 0.0004
Sodium	mg/L	< 0.1
Strontium	mg/L	< 0.003
Sulphate	mg/L	< 1
Thallium	mg/L	< 0.0002
Tin	mg/L	< 0.002
Titanium	mg/L	< 0.005
Total Dissolved Solids	mg/L	< 10
Total Kjeldahl Nitrogen	mg/L	< 0.7
Total Suspended Solids	mg/L	< 1
Uranium	mg/L	< 0.0003
Vanadium	mg/L	< 0.001
Zinc	mg/L	< 0.01

WESA Envir-Eau

440, Blvd Rene-Levesque Ouest Bureau 350 Montréal, Québec Canada H2Z 1V7 Téléphone: 514.844.7199 Télécopieur: 514.841.9111 montreal@envireau.ca

WESA Inc.

3108 Carp Road P. O. Box 430 Ottawa, Ontario Canada KOA 1L0 Tel: (613) 839-3053 Fax: (613) 839-5376 wesacarp@wesa.ca

4 Cataraqui Street The Tower, The Woolen Mill Kingston, Ontario Canada K7K 127 Tel: (613) 531-2725 Fax: (613) 531-1852

wesaking@wesa.ca

160, boul. de l'Hôpital, #204

Gatineau, Québec Canada J8T 8J1 Téléphone: 819.243.7555 Télécopieur: 819.243.0167

envireau@envireau.ca

171 Victoria Street North Kitchener, Ontario Canada N2H 5C5 Tel: (519) 742-6685 Fax: (519) 742-9810 wesakw@wesa.ca

273 Elm Street Sudbury, Ontario Canada P3C 1V5 Tel: (705) 525-6075 Fax: (705) 525-6077 wesasud@wesa.ca

WESA Tech

Fax: (613) 531-1852

wesaking@wesa.ca

4 Kern Road, Suite 1, Toronto, Ontario, Canada M3B 1T1 Tel: (416) 383-0957 Fax: (416) 383-0956 wesatoronto@wesa.ca 4901 - 48 Street

Ground Floor Yellowknife, NT Canada X1A 2P9 Tel: (867) 873-3500 Fax: (867) 873-3499 yellowknife@wesa.ca

Kingston, Ontario Canada K7K 1Z7

4 Cataraqui Street The Tower, The Woolen Mill Tel: (613) 531-2725

WESA Tecnologias S.A. de C.V.

Calle La Mascota, Pasaje # 4, Casa # 3, Colonia La Mascota, San Salvador, El Salvador Teléfono: 011-503-2513-1335 Fax: 613-839-5376 wesasansal@wesa.ca

www.wesa.ca