

SITE CONCEPTUAL MODEL UPDATE AND CONTAMINANT ATTENUATION ZONE DELINEATION

WASTE MANAGEMENT RICHMOND LANDFILL SITE

Submitted to:

Waste Management of Canada Corporation

1271 Beechwood Road R.R. #6 Napanee, ON K7R 3L1

Prepared by:

BluMetric Environmental Inc.

4 Cataraqui Street The Woolen Mill, The Tower Kingston, ON K7K 1Z7

> Project Number: 180150-02 15 October 2018

> > www.blumetric.ca

SITE CONCEPTUAL MODEL UPDATE AND CONTAMINANT ATTENUATION ZONE DELINEATION

WASTE MANAGEMENT RICHMOND LANDFILL SITE

Submitted to:

WASTE MANAGEMENT OF CANADA CORPORATION 1271 Beechwood Road R.R. #6 Napanee, ON K7R 3L1

Prepared by:

BluMetric Environmental Inc. The Tower, The Woolen Mill 4 Cataraqui Street Kingston, ON K7K 1Z7

Project Number: 180150-02

15 October 2018

TABLE OF CONTENTS

	TRODUCTION
2.1 \$	HALLOW FLOW ZONE IN CENTRAL AREA OF PROPOSED CAZ
2.1.1	Borehole Drilling
2.1.2	Monitoring Well Installation 3
2.1.3	Hydraulic Testing
2.1.4	Drive-Point Piezometer Installation4
2.1.5	Groundwater Level Measurements 4
2.1.6	Groundwater Sampling 5
2.2 l	NTERMEDIATE BEDROCK FLOW ZONE IN WESTERN AREA OF PROPOSED CAZ
2.2.1	Borehole Drilling and Downhole Geophysical Testing
2.2.2	Hydraulic Testing
2.2.3	
2.2.4	1 0
2.2.5	Borehole Decommissioning7
3. RE	SULTS
3.1 \$	HALLOW FLOW ZONE IN CENTRAL AREA OF PROPOSED CAZ
3.1.1	Geology7
3.1.2	Hydraulic Conductivity
3.1.3	Groundwater Elevations
3.1.4	Groundwater Chemistry10
3.2 I	ntermediate Bedrock Flow Zone in Western Area of Proposed CAZ11
3.2.1	Geology11
3.2.2	Hydraulic Conductivity11
3.2.3	Groundwater Levels11
3.2.4	Groundwater Chemistry 12
4. IN	TERPRETATION AND UPDATE TO SITE CONCEPTUAL MODEL
4.1.1	Geology13
4.1.2	Physical Hydrogeology14
4.1.3	Groundwater Quality and Extent of Impacts21
5. RE	COMMENDATIONS FOR CONTAMINANT ATTENUATION ZONE
6. RE	FERENCES

LIST OF TABLES

Table 1:	Shallow monitoring locations and rationale	2
Table 2:	Summary of Shallow Monitoring Well Construction Details	3
Table 3:	Summary of Piezometer Construction Details	4
Table 4:	Groundwater Quality Analytical Parameters	5
Table 5:	Hydraulic Conductivities in New Shallow Groundwater Monitoring Wells	7
Table 6:	Groundwater Elevations in New Shallow Groundwater Monitoring Wells and	
	Drivepoint Piezometers – May 14, June 11, June 28 and July 12, 2018	8
Table 7:	Summary of Hydraulic Conductivity Values1	1
Table 8:	Groundwater Elevations in New Intermediate Bedrock Boreholes –	
	May 14, 2018	2
Table 9:	Intermediate Bedrock Monitoring Wells in Proposed CAZ Outside of the Extent of	f
	Impacts	3
Table A:	Groundwater Chemistry from New Monitoring Wells (end of text	:)

LIST OF FIGURES

Figure 1:	Site Location Map
Figure 2a:	Site Plan and Monitoring Locations
Figure 2b:	Proposed CAZ Site Plan and Monitoring Locations
Figure 3:	Shallow Groundwater Flow Zone Potentiometric Surface – Landfill Area
Figure 4a:	Shallow Groundwater Flow Zone Potentiometric Surface – Proposed CAZ
Figure 4b:	Vertical Cross-Sections Showing Shallow Groundwater Flow Divide in Proposed
	CAZ
Figure 5:	Intermediate Bedrock Groundwater Flow Zone Potentiometric Surface
Figure 6:	Delineation of 1,4 Dioxane Impacted Area – Shallow Groundwater Flow Zone
Figure 7:	Delineation of 1,4 Dioxane Impacted Area – Intermediate Bedrock Groundwater
	Flow Zone
Figure 8:	Properties Included in the Proposed CAZ

LIST OF APPENDICES

Appendix A:	Borehole Logs
Appendix B:	Downhole Geophysical Logs (DGI Geoscience Inc.)

Appendix C: Hydraulic Testing Results

1. INTRODUCTION

This report is an update to the Site Conceptual Model (SCM) Update and Contaminant Attenuation Zone (CAZ) Delineation report dated January 2016 (BluMetric, 2016a), Addendum dated April 2016 (BluMetric, 2016b) and SCM Update and CAZ Delineation report dated July 2017 (BluMetric, 2017). The purpose of this document is to provide supplementary technical information to support Waste Management of Canada Corporation's (WM) upcoming application to amend Environmental Compliance Approval (ECA) No. A371203 for the WM Richmond Landfill (the Site), to incorporate the use of a land parcel as a CAZ to bring the Site into compliance with the Reasonable Use Limits (RULs) in Guideline B-7, and the continued use of the property for general rural purposes. The site location is presented on Figure 1.

The complementary hydrogeological work described in this report was conducted to address the concerns outlined in the technical review comments from Ministry of the Environment, Conservation and Parks (MECP) hydrogeologist Shawn Trimper, as outlined in his letter dated November 10, 2017. These review comments and a possible work plan to address outstanding concerns were discussed with MECP hydrogeologists during a meeting held on February 23, 2018.

The proposed scope of work, outlined in a memorandum dated March 20, 2018¹, was reviewed and accepted by MECP technical staff in their letter dated April 5, 2018. The work plan was developed to further characterize:

- The shallow groundwater flow zone within the central proposed CAZ area, with principal objectives to (1) define shallow groundwater occurrence and flow direction, and (2) delineate the extents of landfill leachate derived impacts; and
- Groundwater conditions (quality and flow) within the western area of the proposed CAZ to the south of Beechwood Road.

The methodology associated with these tasks, including additions and adjustments made based on interim results obtained throughout the investigation, are described in more detail in Section 2 while results from the complementary investigation are provided in Section 3. Section 4 provides a discussion and interpretation of the results including an update to the hydrogeological SCM

¹ Proposed Work Program for Complementary Investigation of Groundwater Flow and Potential Impacts in South-Central and Western Areas of the Proposed CAZ, Waste Management Richmond Landfill, Town of Greater Napanee, BluMetric, March 20, 2018

based on historical and recent results. Finally, Section 5 provides updated recommendations regarding the proposed CAZ associated with the Richmond Landfill.

2. FIELD PROGRAM

The reader is referred to the site plans on Figure 2a (including landfill area and proposed CAZ) and Figure 2b (proposed CAZ only) where monitoring locations are shown, including new and existing locations discussed in the following sections.

2.1 SHALLOW FLOW ZONE IN CENTRAL AREA OF PROPOSED CAZ

The objective of this task was to provide additional information on the shallow groundwater flow regime and quality in the area located in the south-central proposed CAZ area where a shallow groundwater divide has been inferred based on local ground surface topography and information from previous investigations.

Thirteen (13) new shallow monitoring locations were established (Table 1), generally comprised of a shallow bedrock or bedrock/overburden contact well and a shallow overburden drive point piezometer (exceptions are noted in Table 1). The locations of additional shallow monitoring wells and drive point piezometers (labelled with suffix "DP") in the central portion of the proposed CAZ, along with the existing monitoring network, are shown on Figure 2b.

Location	Rationale		
North Side of Sha	low Groundwater Divide		
M207 M207-DP	Area of minimal groundwater discharge marking the eastern extent of the central discharge area. Provides shallow horizontal gradient information and quality evaluation		
M206 M206-DP	Area of shallow groundwater discharge with ephemeral pond. Provides shallow horizontal gradient information and quality evaluation		
M204 M204-DP	Provides shallow vertical gradient information, groundwater elevation and quality evaluation		
M203	Shallow groundwater well only. Required for horizontal triangulation and piezometric surface contouring north of groundwater divide		
M200 M200-DP	Provides vertical gradient information (shallow and intermediate bedrock zones) similar to M178R nest, groundwater elevation and quality evaluation		
M199 Provides shallow vertical gradient information, groundwater elevation and q M199-DP evaluation			
South Side of Shallow Groundwater Divide			
M201 M201-DP	Provides shallow vertical gradient information, groundwater elevation and quality evaluation		

Table 1:	Shallow monitoring locations and rationale
----------	--

Location	Rationale		
M202	Shallow groundwater well only. Required for horizontal triangulation and piezometric surface contouring south of groundwater divide		
M205 M205-DP	Provides shallow vertical gradient information, groundwater elevation and quality evaluation		
M209-DP	Added after installation and testing of M199 through M208 to provide additional control on groundwater flow direction to the south since M202 was slow to recover and the water level was not static (discussed in Section 3.1)		
M210-DP	Added after installation and testing of M199 through M209-DP to provide a control point on groundwater flow direction in the southeastern portion of the		
M211-DP	central CAZ		
In Vicinity of Groundwater Divide			
M208-DP	Drive point piezometer only. Area of shallow groundwater discharge. Provides groundwater elevation for horizontal triangulation		

2.1.1 Borehole Drilling

Shallow boreholes M199 through M207 were drilled between April 3 and 18, 2018 (Figure 2b). Drilling was completed by GET Drilling Ltd. of Napanee, ON, using air-rotary techniques. Supervising BluMetric staff made notes regarding stratigraphy and water encountered during drilling. Borehole logs are provided in Appendix A.

2.1.2 Monitoring Well Installation

The target monitoring well screen elevations were identified from all available results and discussed with MECP hydrogeologists prior to installation. A summary of monitoring well construction details is provided in Table 2 while complete borehole logs and monitoring well installation details are provided in Appendix A.

Monitoring Well	Easting	Northing	Ground Surface Elevation (masl)	Bedrock Elevation (masl)	Screened Interval (masl)
M199	335717	4902027	115.51	115.08	112.00 - 113.53
M200	335793	4902060	115.40	114.97	112.05 - 113.58
M201	335829	4901991	115.47	113.64	111.20 - 112.73
M202	335932	4902013	116.48	116.18	113.16 - 114.68
M203	335709	4902128	118.18	117.11	115.13 - 116.66
M204	335910	4902186	116.06	114.54	111.49 - 113.01
M205	336077	4902128	115.83	114.92	112.32 - 113.85
M206	335938	4902329	118.89	117.98	115.69 - 117.21
M207	336131	4902261	116.45	115.99	113.04 - 114.56

 Table 2:
 Summary of Shallow Monitoring Well Construction Details

2.1.3 Hydraulic Testing

Single-well response tests were conducted at each of the new shallow monitoring wells on June 20 and 21, 2018 to estimate transmissivity/hydraulic conductivity in the immediate vicinity of the well. Rising-head tests (instantaneous decrease in water levels) were conducted in each monitoring well.

The analysis software AquiferTest[™] was used to estimate hydraulic conductivity from the rising head test data. Hydraulic testing analytical data sheets are provided in Appendix C and are discussed in Section 3.1.2 below.

2.1.4 Drive-Point Piezometer Installation

Eleven (11) drive-point piezometers, labelled M199-DP, M200-DP, M201-DP, M204-DP, M205-DP, M206-DP, M207-DP, M208-DP, M209-DP, M210-DP and M211-DP, were installed between April 17 and 24, May 4, and July 10, 2018. The drive-point piezometers were constructed of 1.25" (31.75 mm) diameter stainless steel with a 0.46 m screen length, driven down to refusal, believed to correspond to bedrock surface at these locations based on known depth to bedrock information from nearby wells. A summary of piezometer construction details is provided in Table 3. Complete installation details are provided in Appendix A.

Monitoring Well	Easting	Northing	Ground Surface Elevation (masl)	Screened Interval (masl)
M199-DP	335722	4902014	115.17	114.45 - 114.95
M200-DP	335804	4902054	115.19	114.34 - 114.84
M201-DP	335828	4901991	115.21	113.52 - 114.02
M204-DP	335909	4902187	116.01	114.70 - 115.20
M205-DP	336077	4902130	115.67	114.79 - 115.29
M206-DP	335961	4902294	117.79	116.35 - 116.85
M207-DP	336135	4902191	116.36	115.22 - 115.72
M208-DP	336063	4902196	115.70	114.56 - 115.06
M209-DP	335838	4901957	116.20	113.86 – 114.32
M210-DP	336146	4902133	116.34	115.55 – 116.01
M211-DP	336087	4902048	116.76	115.54 – 116.00

Table 3:Summary of Piezometer Construction Details

2.1.5 Groundwater Level Measurements

Water levels were recorded using an electronic water level meter from the new and existing shallow groundwater monitoring wells and drive point piezometers in the central area of the proposed CAZ on May 14, June 11, June 28 and July 12, 2018.

2.1.6 Groundwater Sampling

Groundwater samples were collected on June 11 and September 6, 2018 from all new, as well as existing shallow monitoring wells located in the central CAZ area (M178R-5 and M188-2), using dedicated Waterra inertial lift pumps (foot valves) connected to dedicated polyethylene tubing. Monitoring wells M178R-5, M205 and M206 were re-sampled June 28, 2018 for verification of the initial results.

A minimum of three casing volumes of water were removed from each monitoring well prior to the collection of groundwater samples. During purging, readings for pH, conductivity and temperature were recorded on a regular basis. The stabilization of the parameters was used to assess when well purging was complete. However, if the monitoring well purged dry it was allowed to recover until sufficient volume was available for sampling. Purge water was collected for transport to the Napanee WWTP for disposal.

All water samples were placed in bottles supplied and prepared by the laboratory. The samples were packed in coolers with ice and shipped by courier to the laboratory. Samples were analysed by Maxxam Analytics Inc. of Mississauga, ON, which is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA).

The samples were analyzed for general/inorganic parameters and VOCs shown in Table 4, which correspond to those in Tables 2 and 3 from the Interim Environmental Monitoring Plan (EMP) dated April 2016 (BluMetric, 2016c).

Table 4:	Groundwater Quality Analytical Parameters
Inorganic and General Parameters	Total Dissolved Solids (TDS), Conductivity, Alkalinity, Calcium, Magnesium, Sodium, Potassium, Boron, Iron, Manganese, Ammonia (total), Nitrate, Nitrite, Chloride, Sulphate, Dissolved Organic Carbon (DOC)
Volatile Organic Compounds (VOCs)	1,4-Dioxane, Benzene, Toluene, Ethylbenzene, m&p-Xylene, o-Xylene, Styrene, 1,3,5- Trimethylbenzene, Chlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4- Dichlorobenzene, Chloromethane, 1,1,2,2-Tetrachloroethane, 1,1,1,2-Tetrachloroethane, 1,1,1-Trichloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,2-Dichloroethane, Chloroethane, 1,1-Dichloroethylene, Cis-1,2-Dichloroethylene, Trans-1,2-Dichloroethylene, Trichloroethylene, Tetrachloroethylene, Vinyl chloride

2.2 INTERMEDIATE BEDROCK FLOW ZONE IN WESTERN AREA OF PROPOSED CAZ

Three boreholes (M196, M197 and M198) targeting the intermediate bedrock groundwater flow zone were drilled in the western portion of the proposed CAZ to characterize groundwater conditions in this area. The locations of the boreholes and existing monitoring wells are shown on Figure 2b.

2.2.1 Borehole Drilling and Downhole Geophysical Testing

Boreholes M196, M197 and M198 were drilled between April 2 and 16, 2018. Drilling was completed by GET Drilling Ltd. of Napanee, ON, using air-rotary techniques. After drilling through the overburden, steel casing was installed from ground surface and cemented into the upper portion of the bedrock. Supervising BluMetric staff made notes regarding stratigraphy and water encountered during drilling. Borehole logs are provided in Appendix A.

DGI Geoscience Inc. of Toronto, ON conducted downhole geophysical surveys of the new boreholes; optical televiewer (OTV) logs, along with caliper logs and interpreted features encountered in the boreholes, are provided in Appendix B.

2.2.2 Hydraulic Testing

Water levels were monitored at each of the open boreholes over 21 days and the recovery data were analyzed using the analysis software AquiferTestTM to estimate hydraulic conductivity. Hydraulic testing analytical data sheets are provided in Appendix C and are discussed in Section 3.2.2 below.

2.2.3 Groundwater Level Measurements

Groundwater level measurements were collected over 21 days as part of the hydraulic testing as indicated above, and on May 14, 2018 as part of the full round of water levels collected during the Spring 2018 sampling event using an electronic water level meter in the open boreholes (M196, M197 and M198).

2.2.4 Groundwater Sampling

Samples were collected from the open boreholes on May 4, 2018 using disposable bailers and submitted to Maxxam for analysis of 1,4-dioxane.

2.2.5 Borehole Decommissioning

Boreholes M196, M197 and M198 were decommissioned following receipt of sample analysis results as the hydraulic conductivity measurements revealed that the rock was very tight and not appropriate for monitoring well installation.

3. RESULTS

3.1 SHALLOW FLOW ZONE IN CENTRAL AREA OF PROPOSED CAZ

3.1.1 Geology

The conditions encountered in boreholes M199 through M207 are consistent with previous interpretations of the local geology. The overburden thickness at these locations was thin, ranging from 0 to 1.8 m, and where present consisted of clay, sandy clay, or clayey sand till. Limestone bedrock was encountered in the boreholes at elevations between 113.64 and 117.11 masl. Borehole logs are provided in Appendix A.

3.1.2 Hydraulic Conductivity

Table 5 presents the hydraulic conductivities estimated at each monitoring well, ranging between 3.7×10^{-10} and 2.2×10^{-5} m/s, while the analysis data sheets are included in Appendix C.

rubic b.			
	Well	Hydraulic Conductivity (m/s)	
	M199	5.5 x 10 ⁻⁰⁹	
	M200	1.1 x 10 ⁻⁰⁵	
	M201	5.1 x 10 ⁻¹⁰	
	M202	3.7 x 10 ⁻¹⁰	
	M203	1.2 × 10 ⁻⁰⁶	
	M204	4.8 × 10 ⁻⁰⁹	
	M205	2.2 x 10 ⁻⁰⁵	
	M206	2.0 x 10 ⁻⁰⁵	
	M207	2.7 x 10 ⁻⁰⁹	

 Table 5:
 Hydraulic Conductivities in New Shallow Groundwater Monitoring Wells

3.1.3 Groundwater Elevations

Groundwater levels were measured as part of the routine spring monitoring event from all shallow groundwater flow zone monitoring locations, including previously existing and new

wells and drive point piezometers, across the WM Richmond Landfill site and south of Beechwood Road within the proposed CAZ area.

A map showing the groundwater elevations and the potentiometric contours interpreted from the data for the landfill area is presented on Figure 3. The groundwater flow patterns in the shallow groundwater flow zone within the landfill property North of Beechwood Road have been observed from previous results over several years to be highly predictable. The most recent groundwater contour map from May 14, 2018 (Figure 3) is consistent with historical results and shows that shallow groundwater elevation is influenced by topography and surface water features. The Empey Hill drumlin, a local topographic high located southwest from the landfill, creates a local flow divide, with shallow groundwater being directed both to the north and the south towards areas of lower hydraulic heads. North of the landfill, shallow groundwater converges towards Marysville Creek in the area immediately east of County Road 10 (Deseronto Road), while shallow flow in the southern portion of the site converges on Beechwood Ditch and the southern pond system. Shallow groundwater east of the landfill is influenced by a local zone of higher water levels in the vicinity of monitoring well M96; shallow groundwater north of M96 flows to the north-northwest and ultimately Marysville Creek, while groundwater south of M96 flows to the south-southwest, towards Beechwood Ditch and the stormwater management ponds.

Further south, within the central portion of the proposed CAZ, shallow groundwater elevations were measured on May 14, June 11, June 28 and July 12, 2018 from the newly installed monitoring wells and drive point piezometers², as well as existing shallow monitoring wells M178R-5 and M188-2, and piezometers DP01-16, DP02-16 and DP03-16. Results are shown in Table 6 and on Figure 4a. Figure 4b shows the groundwater elevations from June 11, 2018 relative to ground and bedrock surfaces in cross-sectional view oriented approximately perpendicular to the inferred east-west shallow groundwater flow divide in this topographically low area.

Table 6:	Groundwater Elevations in New Shallow Groundwater Monitoring Wells and
	Drivepoint Piezometers – May 14, June 11, June 28 and July 12, 2018

Monitoring	GW Elevation (masl)									
Location	May 14, 2018	June 11, 2018	June 28, 2018	July 12, 2018						
M199	115.71	115.58	115.67	115.30						
M199-DP	115.56	115.51	115.58	115.05						

² Piezometers M210-DP and M211-DP were installed July 10, therefore, only July 12, 2018 water level data are available from these locations.

Monitoring	GW Elevation (masl)									
Location	May 14, 2018	June 11, 2018	June 28, 2018 July 12, 20							
M200	115.49	115.58	115.46	115.00						
M200-DP	116.49	116.36	116.38	115.80						
M201	115.53	115.47	115.48	115.03						
M201-DP	115.16	115.16	115.19	114.90						
M202	115.08	115.04	115.08	114.58						
M203	115.12	115.01	115.06	114.45						
M204	115.14	115.01	115.15	114.53						
M204-DP	115.21	114.28	113.91	114.58						
M205	115.23	115.17	115.12	114.83						
M205-DP	114.12	113.80	113.58	113.85						
M206	116.94	116.93	116.90	116.64						
M206-DP	115.49	115.24	115.16	115.04						
M207	116.02	115.74	115.91	115.14						
M207-DP	115.79	115.68	115.70	115.13						
M208-DP	115.61	115.60	115.55	115.07						
M209-DP	118.75	118.63	118.44	118.25						
M210-DP ²	~	-	-	Dry						
M211-DP ²	-	-	-	115.46						

Water levels at monitoring wells M201 and M202 were excluded from potentiometric contouring (Figure 4a) because water levels are very slow to recover at these locations, likely due to very low hydraulic conductivities in the immediate vicinity of these wells (Section 3.1.2). M210-DP was dry during the July 12, 2018 water level round.

Results were consistent between dates and showed that the shallow potentiometic surface within the central area of the proposed CAZ is highest to the north (M203, M206, M178R-5) and south (M209-DP, M211-DP) and lowest in the area closest to the east-west topographic low and surface water course (M199, M200). Shallow groundwater in this area correlates well with the elevation of the ground and bedrock surfaces. The groundwater elevations confirm the presence of a shallow groundwater divide in the central portion of the proposed CAZ.

Vertical hydraulic gradients were evaluated by comparing groundwater elevations at locations where both a shallow monitoring well and nearby drive point piezometer were installed. Upward vertical gradients were observed at monitoring locations M178R, M199 and M205, consistent with historical observations of groundwater discharge at some locations north of the inferred shallow groundwater divide. This suggests that shallow groundwater discharges to surface in this area of the proposed CAZ. Examination of the shallow groundwater elevations in plan and cross-sectional views (Figures 4a and 4b) confirms the presence of an east-west trending

groundwater divide, with shallow groundwater converging from the north, east and south towards the low hydraulic head area. This shallow groundwater divide corresponds to the low lying area where a local surface water course runs from east to west between two dug ponds.

Vertical gradients were inconsistent between monitoring events at M200 and M201 where hydraulic conductivity was extremely low and water levels were likely not static, while downward vertical gradients were observed locally at location M204.

3.1.4 Groundwater Chemistry

The shallow groundwater chemistry results for samples collected from the new wells, and existing monitoring wells M175R-5 and M188-2, on June 11 and September 6, 2018 are presented in Table A. Confirmation re-sampling results from June 28, 2018 at monitoring wells M178R-5, M205 and M206 are also included in Table A.

Background concentrations for leachate indicator parameters in the shallow flow zone at the WM Richmond Landfill site are presented in the EMP (BluMetric, 2016c) for the site along with the calculated Guideline B-7 Reasonable Use Limits (RULs) for those parameters that have Ontario Drinking Water Standards.

Existing monitoring well M178R-5 had 1,4-dioxane concentrations ranging from 0.0056 to 0.0059 mg/L, and several parameters exceeding RULs (alkalinity, DOC, iron and TDS). Results for M205 and M206 also reported detectable concentrations of 1,4-dioxane (between 0.001 and 0.003 mg/L), as well as RUL exceedances of iron and manganese (M206 only) and TDS. Low concentrations (below applicable RUL) of some VOCs were also measured at these wells: 1,1-dichloroethane (M178R-5 and M206), benzene (M178R-5), chloroethane (M178R-5 and M205), xylene (M205) and toluene (M178R-5).

1,4-dioxane was not detected in any other shallow monitoring wells in the central area of the proposed CAZ (M199, M200, M201, M203, M204, M207 and M188-2). Results for several wells, M199, M200, M201, M203, M204 and M207, indicate that manganese exceeded the RUL, and iron and TDS also exceeded the RUL at M203; however, all other parameters were below the RULs. Low concentrations (below applicable RUL) of some VOCs were also measured at these wells: 1,3,5-Trimethylbenzene (M201), benzene (M207), xylene (M199, M201 and M207) and toluene (M207).

These results are consistent with the presence of a shallow groundwater flow divide in the central portion of the proposed CAZ, corresponding with the topographic low area and surface water course. The extents of impacts in the shallow flow zone of the central area of the proposed CAZ

are well defined based on chemistry and hydraulic gradients. Shallow groundwater impacted by landfill leachate is present at M178R-5, M205 and M206, located in an area where discharge of leachate impacted groundwater has been observed as seeps at surface during wet periods. Groundwater characteristic of background chemisty and exempt of landfill leachate impacts was observed at other shallow groundwater monitoring wells installed at locations along the surface water course.

3.2 INTERMEDIATE BEDROCK FLOW ZONE IN WESTERN AREA OF PROPOSED CAZ

3.2.1 Geology

The overburden materials and bedrock encountered in boreholes M196, M197 and M198 were consistent with previous interpretations of the local geology. The overburden thickness at these locations was 0.7, 1.6 and 3.3 metres, respectively, and consisted of topsoil and silty or sandy clay over till (till unit absent at M196). Limestone bedrock was encountered in boreholes M196, M197 and M198 at elevations of 116.61, 117.96 and 116.43 masl, respectively. Borehole logs are provided in Appendix A.

Downhole geophysical log results do not reveal any notable open joints/fractures in the new boreholes (Appendix B).

3.2.2 Hydraulic Conductivity

Hydraulic testing analytical results are provided in Appendix C. Hydraulic conductivity values derived from open borehole recovery data are summarized in Table 6 below and comfirm the extremely low permeability of the rock mass in this area (5.6 x 10^{-12} to 3.3 x 10^{-11} m/s). This is consistent with observations from previous investigations, where boreholes M120 and M124 (see Figure 2b) were observed to have extremely low rock mass permeabilities.

rubic / .	barninary of riyaraan	
	Borehole	Hydraulic Conductivity (m/s)
	M196	2.6 × 10 ⁻¹¹
	M197	5.6 x 10 ⁻¹²
	M198	3.3 × 10 ⁻¹¹

 Table 7:
 Summary of Hydraulic Conductivity Values

3.2.3 Groundwater Levels

Groundwater levels were measured on May 14, 2018 at 71 Intermediate Bedrock Flow Zone monitoring locations as prescribed in the EMP (BluMetric, 2016c). A map showing the

groundwater elevations and the potentiometric contours interpreted from the data is presented on Figure 5.

The groundwater in the intermediate bedrock flow zone has been observed from previous results to generally flow to the north, west, and south relative to the landfill. South of the landfill footprint, the groundwater flow orientation is to the south and southeast, and continues onto the proposed CAZ properties south of Beechwood Road.

The most recent groundwater contour map (Figure 5) is consistent with historical results and shows that the water levels in the monitoring wells within the areas to the west, east and directly south of the landfill and Beechwood Road are very similar with a relatively large region with groundwater elevations between approximately 122 and 123 masl. This is indicative of an area of rock with a relatively higher bulk hydraulic conductivity, and with a well-connected fracture network resulting in lower hydraulic gradients. Conversely, the areas to the southwest and southeast exhibit steep hydraulic gradients (closely spaced piezometric contours and rapidly declining hydraulic heads over short distances) and artesian conditions in some locations (e.g., M167, M178R-2 and -3).

Boreholes M196, M197 and M198 (see Tables 7&8 and Figure 2b) were dry immediately after drilling and exhibited a very slow recovery rate (between 0.05 and 0.29 m/day), and had not reached static conditions after several weeks.

Borehole	Easting	Northing	GW Elevation (masl)
M196	335321	4902128	Not static
M197	335177	4902253	Not static
M198	335007	4902294	Not static

 Table 8:
 Groundwater Elevations in New Intermediate Bedrock Boreholes – May 14, 2018

3.2.4 Groundwater Chemistry

1,4-dioxane was below the detection limit of 0.001 mg/L in all three open borehole samples (Table A).

4. INTERPRETATION AND UPDATE TO SITE CONCEPTUAL MODEL

The current SCM for the WM Richmond Landfill was initially introduced in BKA and WESA (2009). Refinements to the SCM were developed as part of the Action Plan investigation documented in BKA and WESA (2012). Subsequent phases of hydrogeological investigation

beginning in 2012 have focused on properties south of Beechwood Road, as well as the adjacent property to the east of the WM property and north of Beechwood Road. The information obtained from these complementary investigations has been used to further refine and extend the SCM, and to establish the extent of the proposed CAZ for the site. The most recent updates to the SCM were provided in BluMetric (2016a, 2016b and 2017). The information has also been used to develop the interim EMP for the landfill (BluMetric, 2016c).

This section provides an up-to-date conceptualization of the SCM for the WM Richmond Landfill, building on the previous SCM updates presented in the documents listed above, among others, and taking into account the findings from the latest hydrogeological investigation documented in sections 2 and 3 of the present report. Section 5 provides recommendations related to the proposed CAZ boundary based on the updated SCM and delineation of landfill leachate impacted groundwater.

4.1.1 Geology

The Richmond Landfill Site is located within the Napanee Plain which, on a regional scale, is a flat to slightly undulating plain of limestone dipping slightly to the south and typically covered with a relatively thin veneer of overburden. In the immediate vicinity of the Site, the ground surface slopes approximately 1 m to 3 m per kilometre to the south. A drumlin (Empey Hill) is present on the Site southwest of the landfill. The dominant drainage feature on the Site is Marysville Creek located north of the landfill, while Beechwood Ditch provides Site drainage south of the landfill.

The overburden consists of less than 0.5 m to 10 m of clayey silt till and thickens to approximately 20 m in the area of Empey Hill to the southwest of the landfill. The overburden is underlain by the Verulam Formation which consists of horizontally bedded, medium to coarse crystalline limestone with interbedded shale layers. The Verulam is interpreted to be a few metres thick at the Site and is underlain by the Bobcaygeon Formation which generally consists of horizontally bedded, crystalline limestone with interbedded shale in the upper part and interbedded calcarenite in the lower part. The thickness of the Bobcaygeon Formation is underlain by the Gull River Formation which consists of horizontally bedded limestone and exhibits a thickness of approximately 75 m beneath the Site.

Three distinct karst conditions are also present within the proposed CAZ south of Beechwood Road: 1) a deep, likely paleokarst-controlled, conduit system in the west; 2) a shallower conduit system developing under post-glacial conditions in the east (represented by a groundwater trough); and, 3) a very shallow epikarst, located in areas of shallow soil over bedrock (BluMetric, 2017).

4.1.2 Physical Hydrogeology

The active groundwater flow zone at the Site extends to a depth of approximately 30 m below the top of bedrock. The dominant fracture orientation in the upper 30 m of bedrock is parallel to bedding (horizontal to sub-horizontal) distributed throughout the upper 30 m of bedrock, implying that there are no particular depth horizons exhibiting anomalous amounts of fracturing. Some borings do exhibit a shallow weathered zone, however, in which fracturing is more pronounced. A moderate amount of vertical to sub-vertical fractures exist providing hydraulic connections between the various horizontal fractures.

The area south of the landfill footprint and east of the landfill entrance road is characterized by interconnected fractures that appear to be well connected to recharge/discharge features, which are likely in direct connection to surface infiltration. The well-connected area has a significant role in the local variation of the potentiometric surface as the water levels vary throughout the year by as much as 4 to 6 m. The results of various CAZ investigations over the past several years, which demonstrated hydraulic connection between monitoring wells north and south of Beechwood Road, have confirmed that the hydraulically well-connected area extends onto the proposed CAZ properties, as far south and southeast as well locations M188-1, M190 and M167.

The results of hydraulic conductivity tests conducted in boreholes and monitoring wells within the well-connected area have been compiled, and compared to the results from tests conducted outside of the apparent boundaries of this area (BluMetric, 2016a). The geometric mean of the hydraulic conductivities measured inside the area of well-connected boreholes was slightly higher than the geometric mean of the hydraulic conductivities measured outside the area and the distribution of results showed a much higher proportion of hydraulic conductivities greater than 1x10⁻⁵ m/s within the area of well-connected boreholes, relative to the area outside. The increased distribution of higher hydraulic conductivities and the observed connections between monitoring wells within this area are consistent with the interpretation that this area consists of a well-connected fracture network through which groundwater can flow at a greater rate than outside of the area.

Hydraulic conductivity values measured at boreholes M196, M197 and M198 during the field program described above in Sections 2 and 3, were much lower than hydraulic conductivities measured in the area of well-connected boreholes. These low hydraulic conductivity values are consistent with results obtained from nearby boreholes M120 and M124 (see Figure 2b). Observations from these five boreholes drilled in the northwestern portion of the proposed CAZ revealed a lack of significant water-bearing fractures, indicating that the well-connected area does not extend to the west in this area.

It is important to emphasize that the area of well-connected bedrock fractures described above interacts hydraulically with other areas of the Site. It is distinct due to its behavioral differences during recharge/discharge time periods, but does not represent a separate flow regime. Furthermore, the zones of lower hydraulic conductivity surrounding the area to the west, south and east do not represent a barrier to flow; rather the rate of groundwater flow is slower within these lower permeability zones within the fractured bedrock. The presence of the less permeable zones is clearly seen by comparison of temporal water level variations inside and outside of the area of well-connected fractures.

Flow out of the area is controlled by the lower hydraulic conductivity in the surrounding rock. Infiltrating water recharging into the well-connected area is stored, resulting in the noticeable rise in water levels, which then dissipate as groundwater flow moves through and out of the area.

Another area that exhibits a distinct hydraulic behaviour was identified in the southern portion of the proposed CAZ. Static groundwater elevations in intermediate bedrock zone monitoring wells located within this area (eg, M173, M174, M181, M187, M189, M194-1, M194-2 and M195) were observed to be much deeper compared to wells in the area of higher hydraulic conductivity monitoring wells introduced previously. Static water levels at these locations were deep, between 15 and 30 mbgs (105 masl or lower) compared to 5 mbgs typically (116 masl or greater) within the higher conductivity area (see Figure 5). Similarly, groundwater elevations at M176 and M179, while not as deep (2.0 and 6.1 mbgs, respectively), also exhibited static groundwater elevations of 111 masl or lower.

While most wells in this group exhibit low permeability across the vertical profile, relatively more permeable fracture zones were identified in some boreholes (eg, M189, M187. M194-1). At well location M187, a highly permeable fracture was encountered at a depth of approximately 26 mbgs (~90 masl). Despite the limited drawdown that could be achieved during the pumping test at this location with a relatively high pumping rate of more than 100 L/min, M187 was confirmed to be hydraulically connected to other wells defining the periphery of the area of responsive monitoring wells (eg, M64-2, M173, M179 and M185).

Similarly, significant water bearing fractures were identified in M194-1 at comparable depths (29-33 mbgs or 82-86 masl), and also hydraulically connected to the network of hydraulically active wells (M187, M174, etc) and new well M195 (active fracture at 30 mbgs or 89 masl).

The karst conduits found within the southwestern and central portions of the CAZ (BluMetric, 2017) do not appear to be directly influencing water levels in the aforementioned area of higher hydraulic conductivity in the northern portion of the proposed CAZ and south part of the landfill property. This higher hydraulic conductivity area lies upgradient of the karst and includes an area of artesian conditions near its southern/eastern boundary (e.g. M167, M178R-2 and -3). The presence of artesian conditions in juxtaposition to karst is of interest as karst conduits are characterized by relatively high hydraulic conductivities. If the entire site were affected by the karst, one would not expect the presence of areas with such high hydraulic heads (artesian conditions), rather the karst would serve to act as a drain, keeping heads low.

4.1.2.1 Shallow Groundwater Zone

The shallow groundwater flow zone comprises overburden, the overburden-bedrock contact, and the first one to two metres of depth into bedrock. Water level monitoring indicates that these three portions of the shallow flow system act in concert and can be treated as a single flow zone or hydrostratigraphic unit. The directions of groundwater flow in the shallow flow zone are strongly influenced by ground surface topography, which is typical where the water table is generally shallow.

Shallow zone flownets are constructed seasonally (spring, summer and fall) at the site using water level data from hydraulically responsive wells. Figure 3 presents the most recent piezometric surface for the shallow groundwater flow zone in the area of the landfill. The flownets, documented in semi-annual reports, show that there is a water level high beneath Empey Hill stemming from the elevated topography of this feature. Empey Hill creates a flow divide west of the landfill with shallow groundwater being directed both to the north and the south. The northerly flowing groundwater discharges to Marysville Creek.

The southerly flowing groundwater flows towards Beechwood Ditch in the southwest portion of the Site. Shallow groundwater south of the landfill and south of Beechwood Road also flows towards the area of lower water levels in the southwest portion of the Site.

Shallow groundwater east of the landfill is influenced by a local zone of higher water elevations in the vicinity of monitoring well M96. Shallow groundwater north of well location M96 flows to the north and ultimately into Marysville Creek while groundwater south of well location M96

flows to the south-southeast. The shallow groundwater flow directions described here do not vary significantly with season despite the fact that water levels at the Site can be up to approximately 2 m higher in the spring months compared to the fall months. The lack of variation of shallow groundwater flow direction with season stems from the fact that the shallow flow system is topographically controlled and indicates that an appropriately located monitoring well network will detect a potential contaminant plume in the shallow zone.

Farther south, shallow groundwater discharges into a low-lying area in the central portion of the proposed CAZ south of Beechwood Road where a surface water course is present. The land surface rises south of this low-lying area which acts as a local divide for the shallow groundwater flow in this part of the CAZ, as is apparent from the interpolated shallow groundwater contours recorded between May 14 and July 12, 2018 (Figure 4a), and from the vertical cross sections shown on Figure 4b. Shallow groundwater flows towards the local divide from the north, east and south, consistent with the local ground surface topography.

4.1.2.2 Intermediate Bedrock Groundwater Zone

The intermediate bedrock groundwater flow zone extends from approximately one to two metres below the top of bedrock to a depth of approximately 30 m below the top of bedrock. The 30 m limitation was selected on the basis of the fact that groundwater salinity increases significantly below depths of approximately 30 m into bedrock and the fact that fresher groundwater, including leachate, does not have the ability to displace the denser, saline groundwater. In addition, because of the significant anisotropy exerted by the dominance of horizontal to sub-horizontal fractures, the primary groundwater flow direction in bedrock is horizontal. This does not, however, rule out localized occurrences of vertical flow within the intermediate flow zone. The deep groundwater below 30 m depth into bedrock is classified as non-potable according to the Ontario Drinking Water Standards, Objectives and Guidelines. At some well locations, naturally saline waters exist in the intermediate bedrock at depths of less than 30 metres, particularly in areas of lower hydraulic conductivity and slower groundwater flow rates. These waters are distinguishable by naturally elevated sodium, chloride and TDS concentrations, low alkalinity and often the presence of ammonia and BTEX compounds.

As with shallow groundwater, the intermediate zone groundwater will always flow from regions of high hydraulic head to regions of low hydraulic head, with flow velocity controlled by hydraulic conductivity along the groundwater flowpaths. The hydraulic testing programs conducted since 2009 have revealed that there is continuity of hydraulically connected fractures in the intermediate flow zone surrounding the landfill to the west, south and southeast. Pumping of individual wells at various depths induced hydraulic responses up to 450 m away, supporting

the interpretation that groundwater flow occurs primarily through horizontal and sub-horizontal fractures that are connected to each other by vertical to sub-vertical fractures.

The intermediate bedrock groundwater flow zone potentiometric surface (Figure 5) illustrates that groundwater flowing under the landfill generally flows to the west from the western edge of the landfill, to the south-southeast from the southern edge of the landfill, and to the southwest from the southwest corner of the landfill. The hydraulic influence of Empey Hill is seen in the intermediate flow zone in that a relatively stagnant zone (weaker hydraulic gradients) is created southwest of the landfill. Unlike the shallow groundwater zone flow system, however, the intermediate zone flow system exhibits significant flow direction changes with season. This stems from the fact that the intermediate flow zone is not as constrained by topographic control as the shallow zone flow system. The regional groundwater flow direction is southward, following the dip of the limestone bedrock as well as the general slope of the topographic surface.

Area South of Landfill

The groundwater piezometric contours and orientations of groundwater flow for the intermediate bedrock in the area of well-connected fractures south of the landfill and east of the landfill access road can be distinguished by periods of higher groundwater levels and periods of lower groundwater levels. During periods of high groundwater levels, the groundwater generally flows south-southeast across this area toward Beechwood Road (see BluMetric (2017), Figure 5(b)). Groundwater from the southern edge of the landfill east of the entrance road flows towards the southeast in the direction of well location M105 and continues southeastward toward Beechwood Road.

During periods of lower water levels, groundwater flow is oriented toward the central portion of the well-connected area from the north; west and south (see BluMetric (2017), Figures 5(a) and 5(c)). Flow from the eastern half of the landfill footprint is directed toward the central portion of this area, as is flow from west of the landfill entrance road, as well as flow from properties south of Beechwood Road. Based on the water level contours, groundwater flows eastward south of the landfill, and continues toward the east-southeast. During periods of low water level, the data suggest that a groundwater divide is established south of Beechwood Road, along an approximate orientation from northwest to southeast. This is particularly apparent on (BluMetric (2016a), the potentiometric surface for October 2013 Figure 5(a)), where groundwater north of the divide flows onto the landfill property from the properties south of Beechwood Road, and groundwater south of the divide flows southward. The groundwater divide is present only during periods of low water levels; at other times, the flow is more consistently southeastward.

Flownets developed over the past several years indicate that the groundwater flow continues in a southeastward orientation across the properties that are proposed to be used for the CAZ. Monitoring wells outside of the well-connected area typically exhibit much lower water levels than the wells within the area. Monitoring wells within this area had similar water levels to each other, which is indicative of an environment of higher bulk rock hydraulic conductivity and lower hydraulic gradients. The identification of karst systems in the southwest and southeast portons of the proposed CAZ area is consistent with this interpretation.

The implication of the changing flow direction seen in the intermediate bedrock is that hydraulically downgradient locations within the intermediate flow zone will vary with season, and that an appropriate monitoring network to assess groundwater quality in the downgradient flow direction will need to comprise a network of monitoring wells at various locations. A corollary to this is that the changing groundwater flow directions in the intermediate flow zone will cause potential leachate plumes to shift in flow direction with season, thereby ensuring that a network of monitoring wells is capable of detecting their presence.

Groundwater from the intermediate bedrock groundwater flow zone is believed to be naturally discharging to ground surface in a large wet area located in the central portion of the proposed CAZ. Covering approximately 500 m by 100 m, this low lying area extends between well locations M178/M178R and M173/M194. This diffuse discharge area is located on the north side of the local shallow groundwater flow divide that corresponds to the topographically low area, as described above in section 4.1.2.1 and shown on the vertical cross-sections on Figure 4b.

Multiple lines of evidence confirm that groundwater discharge is occurring in this area:

- Strong vertical hydraulic connections exist within the intermediate bedrock groundwater flow zone in this area, for example between M178R-4 (screened 4.5 m below bedrock surface) and the deeper wells at this location (M178R-2 and M178R-3, screened 17 and 11 m below bedrock, respectively);
- Artesian conditions exist in several intermediate bedrock monitoring wells in this area (eg, M178, M178R where hydraulic heads have been observed to reach as much as 4.9 m above ground surface, at M178R-2 on May 15, 2015), indicating the presence of strong upward vertical hydraulic gradients;
- Groundwater discharge points have been observed at ground surface in various locations within this diffuse area, and found to flow intermittently depending on the conditions, including during winter where some discharge points remain flowing and wet at times when temperatures are well below freezing; and

• Areas where groundwater was observed to discharge to surface were sampled and found to be impacted with low 1,4 dioxane concentrations (between 0.0015 and 0.004 mg/L in fall 2015, well below the PWQO compliance limit for surface water (0.02 mg/L)). The results from the new shallow monitoring well M178R-5, located near the discharge area, had 1,4 dioxane concentrations 0.007 to 0.0074 mg/L in fall 2015 (NOTE: recent results at M178R-5 exhibited lower 1,4 dioxane concentrations between 0.0056 and 0.0059 mg/L (March and June, 2018, see Tables A and B).

Karst features have been observed south of Beechwood Road in the central portions of the proposed CAZ area. The karst assessment (BluMetric, 2017) revealed that three distinct karst conditions exist within the proposed CAZ:

- 1. A deep, likely paleokarst-controlled, conduit system in the west;
- 2. A shallower conduit system developing under post-glacial conditions in the east (represented by a groundwater trough); and,
- 3. A very shallow epikarst, located in areas of shallow soil over bedrock.

The karst conduits drain portions of the southwestern and central portions of the CAZ but do not appear to be influencing water levels in the area of the leachate impacted plume (see section 4.1.3). Downgradient monitoring wells located within or adjacent to the karst (e.g. M187, M194, M174, M176 and M179) have not been impacted (below detection for 1,4 dioxane and alklalinity below 400 mg/L). Additionally, the supplementary study conducted by the karst expert (BluMetric, 2017) of the unnamed creek running from northeast to southwest along the southeast limits of the proposed CAZ (see Figure 2b) confirm that, while minor losses or gains from shallow bedrock in the vicinity of the creek cannot be ruled out, there is no evidence of karst interconnections within the proposed CAZ.

Area North and Northwest of Landfill

The area north and northwest of the landfill footprint, between the landfill and Marysville Creek, has been identified through hydraulic testing as an area where relatively lower hydraulic conductivity exists. This does not imply that there is zero groundwater flow through this area, but rather that the groundwater flow rate is lower than in other areas around the landfill site.

Marysville Creek is the primary potential receptor and should continue to be monitored north of the landfill. The extensive amount of monitoring to date, including testing for 1,4 dioxane and other primary leachate indicators, demonstrates that impacts have not been identified in the groundwater adjacent to the creek or in the surface water in the creek. Impacts are seen in the groundwater within approximately 50 metres north and west of the unlined Phase 1 portion of

the landfill (see section 4.1.3); however, because of the lower hydraulic conductivity and slow rate of groundwater flow, no impacts are observed in groundwater along the creek.

4.1.2.3 Deep Bedrock

The deep bedrock zone is defined as groundwater occurring greater than approximately 30 m below the top of bedrock. The deep groundwater is saline and not suitable for potable use. There is limited hydraulic interaction between the intermediate bedrock flow zone and the deep bedrock because of the differences in groundwater density related to salinity. Deep bedrock groundwater generally flows to the south in a horizontal direction, although vertical components of flow may also exist. Bulk rock hydraulic conductivity is generally lower at depths greater than 30 m below the top of bedrock, and fracture apertures are generally smaller below this depth. It follows that the movement of groundwater in the deep bedrock will be slower than in the shallow and intermediate bedrock flow zones.

4.1.3 Groundwater Quality and Extent of Impacts

Background groundwater quality in the shallow and intermediate bedrock flow zones is characterized by geochemistry in several monitoring wells on the landfill property, as described in the latest EMP (BluMetric, 2016c).

The primary indicators that are used to delineate impacts from landfill leachate at the site are 1,4 dioxane and alkalinity. 1,4 dioxane is a synthetic volatile organic compound (VOC) used as a chemical stabilizer for chlorinated solvents that does not exist in nature, is entirely miscible in water and does not readily biodegrade or adsorb onto soils or rock (U.S. EPA, 2014). Consequently, the presence of 1,4 dioxane in groundwater at detectable concentrations (> 0.001 mg/L) is used to indicate the furthest extent of impacts. In addition, where 1,4 dioxane is detected, alkalinity has been found to be generally above 400 mg/L. Other parameters are also used to assist in determining impacts and are included in the routine monitoring program.

Groundwater sample data collected from on-site monitoring wells indicate that leachate impacted groundwater is flowing from the northwest corner of the unlined Phase 1 footprint of the landfill in the shallow and intermediate bedrock groundwater flow zones. Figure 6 and Figure 7 illustrate on a site plan the approximate extents of the impacted area in the shallow and intermediate bedrock flow zones, respectively.

In the shallow groundwater zone north of Beechwood Road (Figure 6), impacts from landfill leachate are evident at monitoring wells M100, M101, M103 and M104 north and west of the Phase 1 landfill cell. These monitoring wells are all located in close proximity to the landfill.

Further downgradient, in particular along Marysville Creek, no impacts have been observed in the shallow groundwater. Similarly, monitoring well M41, located approximately 25 m south from the landfill footprint, has been impacted by leachate while no subsurface impacts from landfill leachate have been observed at shallow groundwater monitoring locations farther downgradient (e.g., M54-4 or M70-3, located south and southeast of the landfill, respectively).

An area of shallow groundwater discharge exists within the proposed CAZ, approximately 400 m south of Beechwood Road in an area just upgradient (north) from the local surface water course that extends between two dug ponds (see Figure 6). The shallow groundwater in this area shows detectable concentrations of 1,4 dioxane. The extent of shallow groundwater impacts within the proposed CAZ (shown on Figure 6) has been delineated based on shallow groundwater chemistry. In this area, upward hydraulic gradients, groundwater seeps and generally wet conditions are observed (e.g., BluMetric, 2016a). Sampling results from shallow monitoring wells M178R-5, M205 and M206 (Table A) show evidence of landfill impacts at those locations (presence of 1,4 dioxane at detectable but low concentrations), while no landfill leachate impacts have been detected to the immediate west (M199, M200, M201, M203 and M204), south (M188-2, M201 and M202) or east (M207). Similarly, no landfill derived impacts have been detected in the local surface water course sampled three times per year as part of the EMP (which corresponds to a local divide for shallow groundwater as described in section 4.1.2.1).

In the intermediate bedrock groundwater zone (Figure 7), impacts are evident within 50 m north of the landfill footprint at monitoring wells M6-3 and OW4 where the highest concentrations of 1,4 dioxane (up to 0.35 and 0.13 mg/L respectively) have been measured (Table A), while no evidence of impacts is seen further downgradient, closer to Marysville Creek. This is consistent with the hydraulic testing results which show an area of low hydraulic conductivity north and northwest of the landfill.

There is no evidence of impacts in any of the monitoring wells located to the west of the landfill footpring, nor to the south of the landfill footprint and west of the site entrance road.

Along the eastern boundary of the landfill property, 1,4 dioxane has been detected above the RUL of 0.001 mg/L at montoring wells M168 and M170 (0.0072 and 0.012 mg/L, respectively, in spring 2018). The leachate impacted groundwater plume extends onto the southwestern corner of the property located to the east of the southeast limit of the WM property, up to monitoring well M192.

South of the landfill, 1,4 dioxane has been detected in monitoring wells located on the landfill property, north of Beechwood Road and east of the site access road. Landfill leachate impacts are also seen in intermediate bedrock groundwater monitors located within the north and central

portion of the proposed CAZ at concentrations above the RUL of 0.001 mg/L and show impact to groundwater quality originating from the landfill. These impacted monitoring wells have all been determined to be hydraulically responsive to pumping tests, including monitoring well M64-2 which did not respond to most pumping tests and only responded subtly to pumping at M187. This location appears to correspond to the western boundary of the area of higher hydraulic conductivity. However, contrary to what has been observed at most of the other impacted wells, other leachate indicator parameters, particularly alkalinity and tritium (BKA and WESA, 2009), are not elevated at M64-2. Ongoing monitoring since 2013 has confirmed the presence of 1,4 dioxane at this location at low but stable concentrations between 0.002 and 0.003 mg/L. The presence of 1,4 dioxane in this monitoring well demonstrates that lower hydraulic conductivity monitoring wells, even if non-responsive during pumping tests, are also part of the intermediate bedrock flow system and can be utilized to monitor groundwater impacts from the landfill.

Based on the results of previous hydrogeological investigations and the latest iteration reported in this document, it is concluded that groundwater impacts have been delineated and extend downgradient from the landfill onto the proposed CAZ as far southwest, south and southeast as well locations M64-2, M178R and M167, respectively (see Figure 7). The monitoring wells within the proposed CAZ and located outside of the extent of impacts are listed in Table 9.

Table 9:	Intermediate Bedrock Monitoring Wells in Proposed CAZ Outside of the Extent of
	Impacts

M63-2	M179	M185-2	M190
M173	M181-1	M186	M191
M174	M181-2	M187	M194-1
M176	M182	M188-1	M194-2
M177	M185-1	M189	M195

5. RECOMMENDATIONS FOR CONTAMINANT ATTENUATION ZONE

<u>Eastern CAZ Limits</u>: Recent monitoring results have confirmed that the groundwater in a small portion of the southwest corner of the property located to the east of the southeast corner to of the landfill property limit has been impacted by landfill leachate. WM proposes to extend the eastern limit of the proposed Contaminant Attenuation Zone (CAZ) north of Beechwood Road by adding an area of approximately 20 acres east of the landfill property if an agreement can be reached with the property owner. If such a negotiated agreement cannot be achieved, WM will implement an alternative solution consisting of a purge well system located along the eastern landfill property limit, and designed to hydraulically control the off-site migration of landfill leachate groundwater in the intermediate bedrock flow zone.

<u>Western CAZ Limits</u>: WM proposes to extend the proposed CAZ westerly to Deseronto Road to include additional buffer. This is conservative considering the low permeability bedrock encountered in the western portion of the proposed CAZ area south of Beechwood Road, and the well-defined direction of groundwater flow in the intermediate bedrock in the northern portion of the CAZ in this area.

Figure 8 shows the properties south of Beechwood Road where WM owns or controls the groundwater rights, as well as the updated proposed CAZ including the extended area to the west. The impacted area has been delineated conservatively using the detection limit for 1,4 dioxane (0.001 mg/L). Based on 1,4 dioxane concentration results collected since 2013 from an extensive network of hydraulically active groundwater monitoring wells, the extent of the contaminant plume originating from the landfill has been adequately defined. The limits of the proposed CAZ extend a minimum buffer of 400 m outside of the outer extent of the plume, which includes a number of unimpacted downgradient groundwater monitoring wells suitable for detection potential landfill leachate impacts.

Respectfully submitted, BluMetric Environmental Inc.

Mad[']eleine Corriveau, M.Sc., P.Geo. Senior Environmental Geochemist

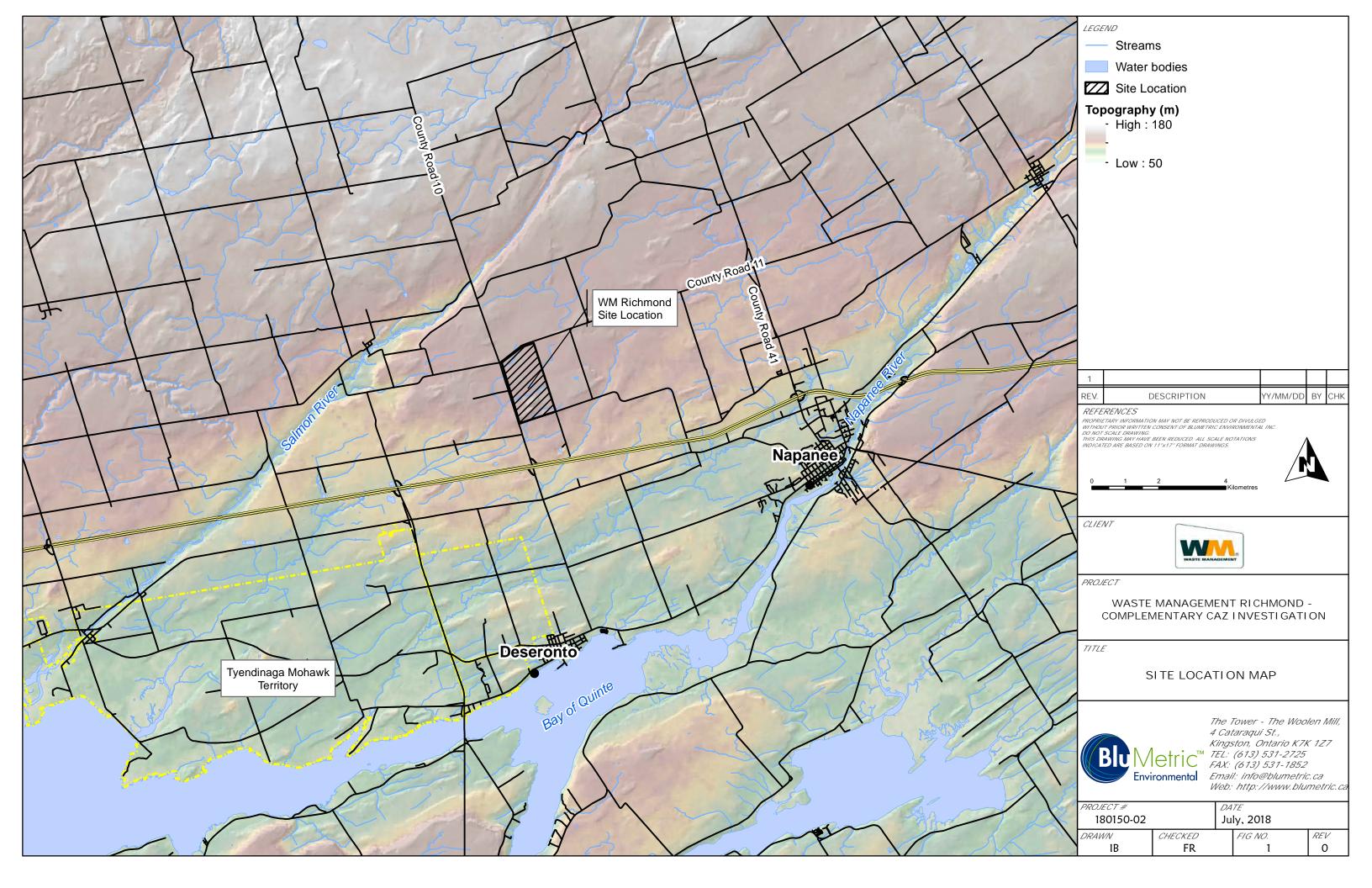
Francois Richard, P.Geo., Ph.D. Senior Hydrogeologist

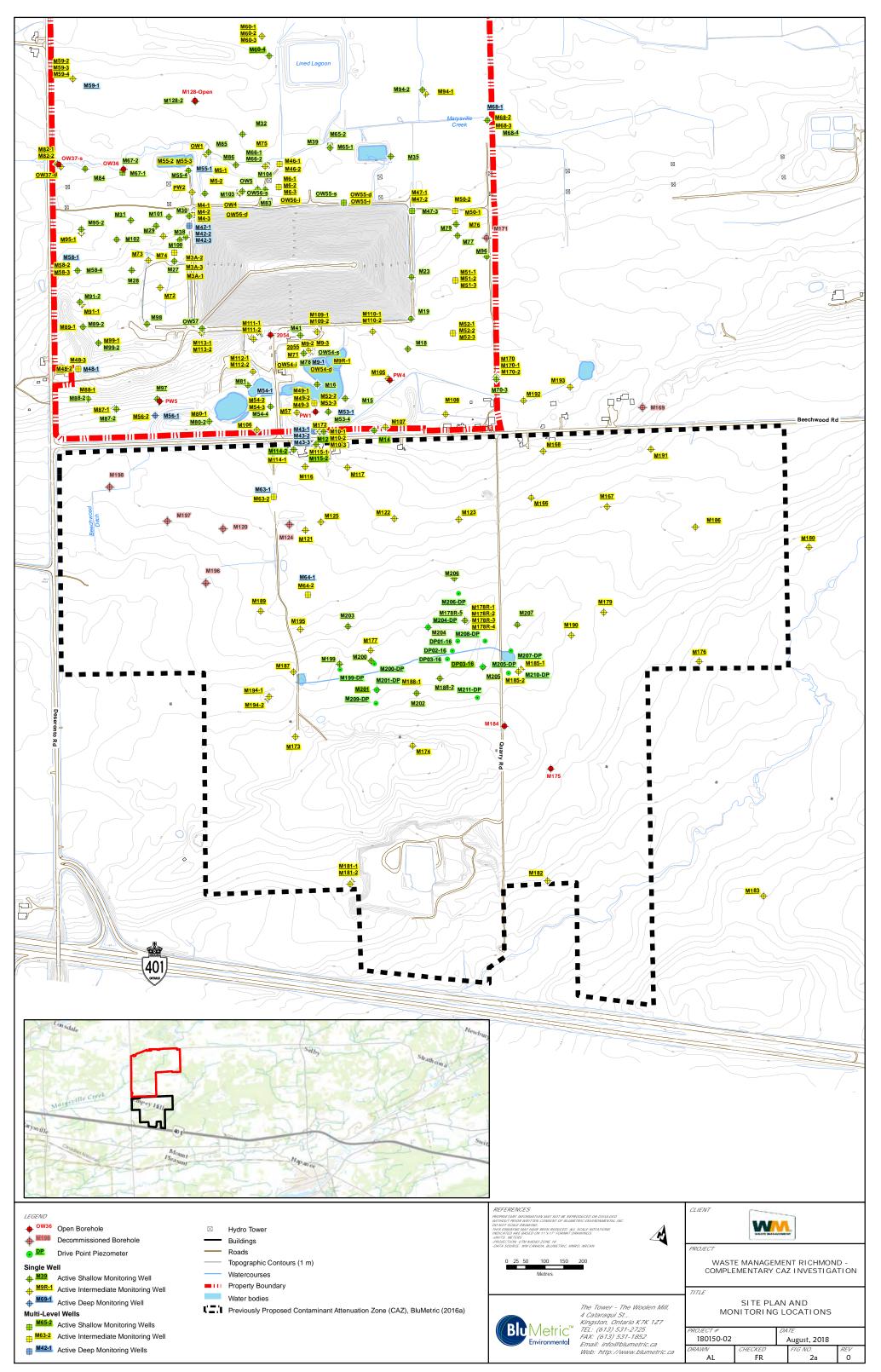
Phil Tibble, M.Sc., P.Geo. Senior Hydrogeologist

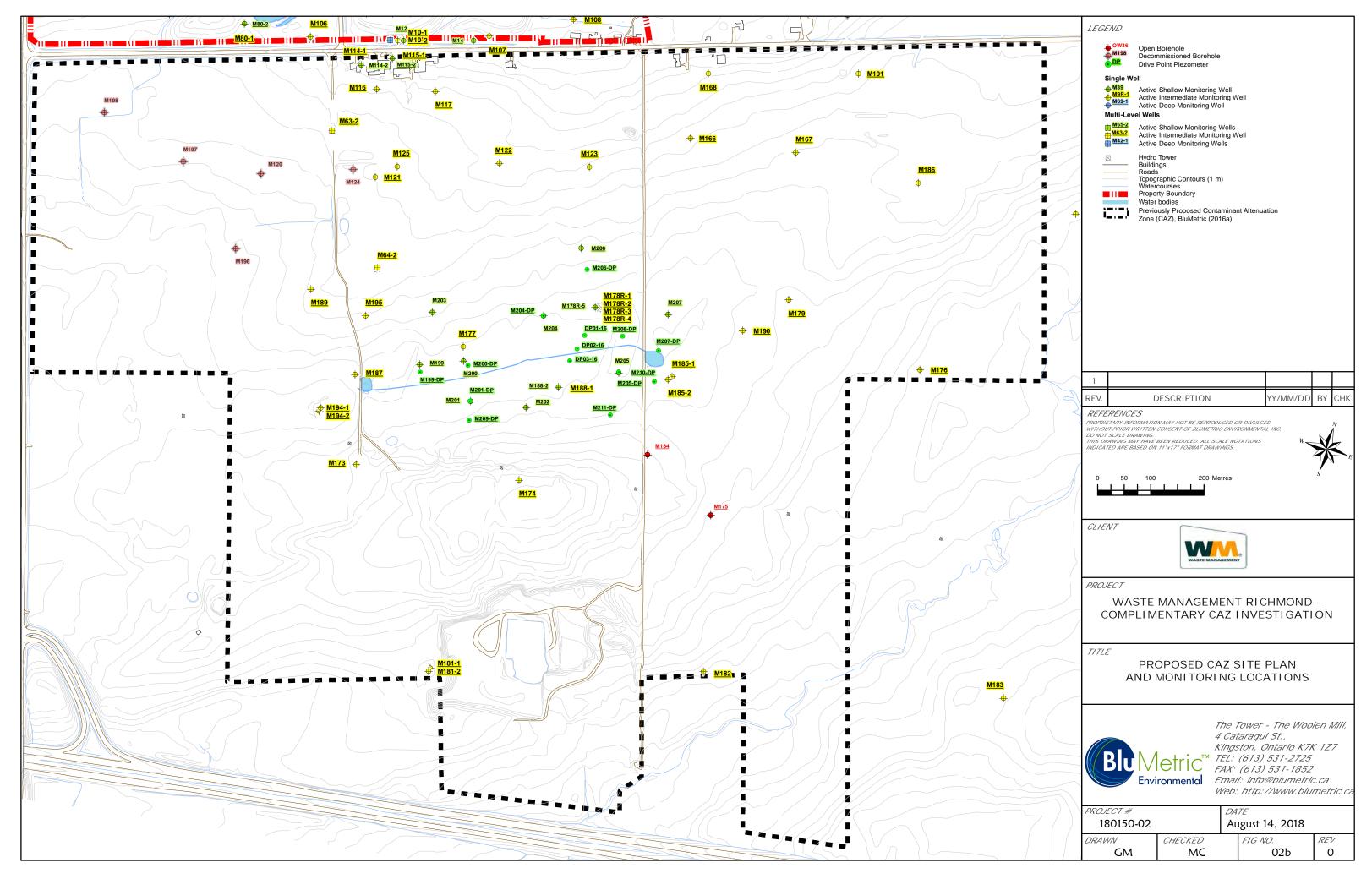
6. **REFERENCES**

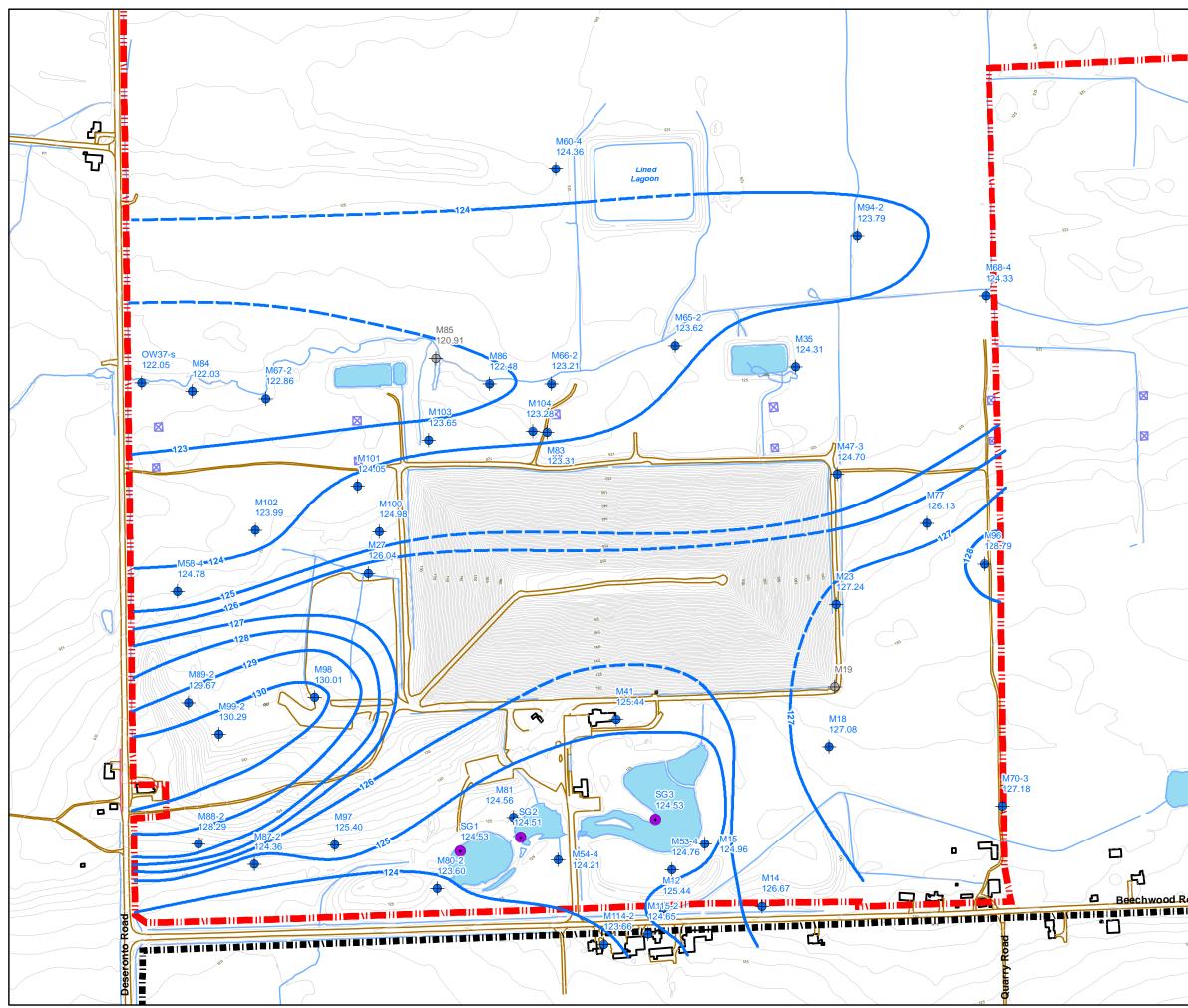
- BluMetric, 2016a: *Site Conceptual Model Update and Contaminant Attenuation Zone Delineation, Waste Management Richmond Landfill Site*, prepared by BluMetric Environmental Inc., Report dated January 2016.
- BluMetric, 2016b: Addendum to Site Conceptual Model Update and Contaminant Attenuation Zone Delineation, Waste Management Richmond Landfill Site, prepared by BluMetric Environmental Inc., Report dated April 2016.
- BluMetric 2016c: *Revised Interim Environmental Monitoring Plan v. 05, WM Richmond Landfill, Town of Greater Napanee, Ontario*, BluMetric Environmental Inc., Report dated April 2016.
- BluMetric, 2017: Site Conceptual Model Update and Contaminant Attenuation Zone Delineation, Waste Management Richmond Landfill Site, prepared by BluMetric Environmental Inc., Report dated July 2017.
- BluMetric, 2018: Proposed Work Program for Complementary CAZ Investigation of Groundwater Flow and Potential Impacts in the South-Central and Western Areas of the Proposed CAZ, Waste Management Richmond Landfill, Town of Greater Napanee, BluMetric Environmental Inc., Memorandum dated March 20, 2018
- BKA and WESA 2009: Site Conceptual Model Report, WM Richmond Landfill, B. Kueper & Assoc. Ltd. and WESA Inc., Report dated October, 2009.
- BKA and WESA 2012: Groundwater Action Plan Investigation Report, WM Richmond Landfill, B. Kueper & Assoc. Ltd. and WESA Inc., Report dated October, 2012.
- U.S. EPA, 2014: *Technical Fact Sheet for 1,4 Dioxane*, January 2014: <u>https://www.epa.gov/sites/production/files/2014-</u> <u>03/documents/ffrro_factsheet_contaminant_14-dioxane_january2014_final.pdf</u>

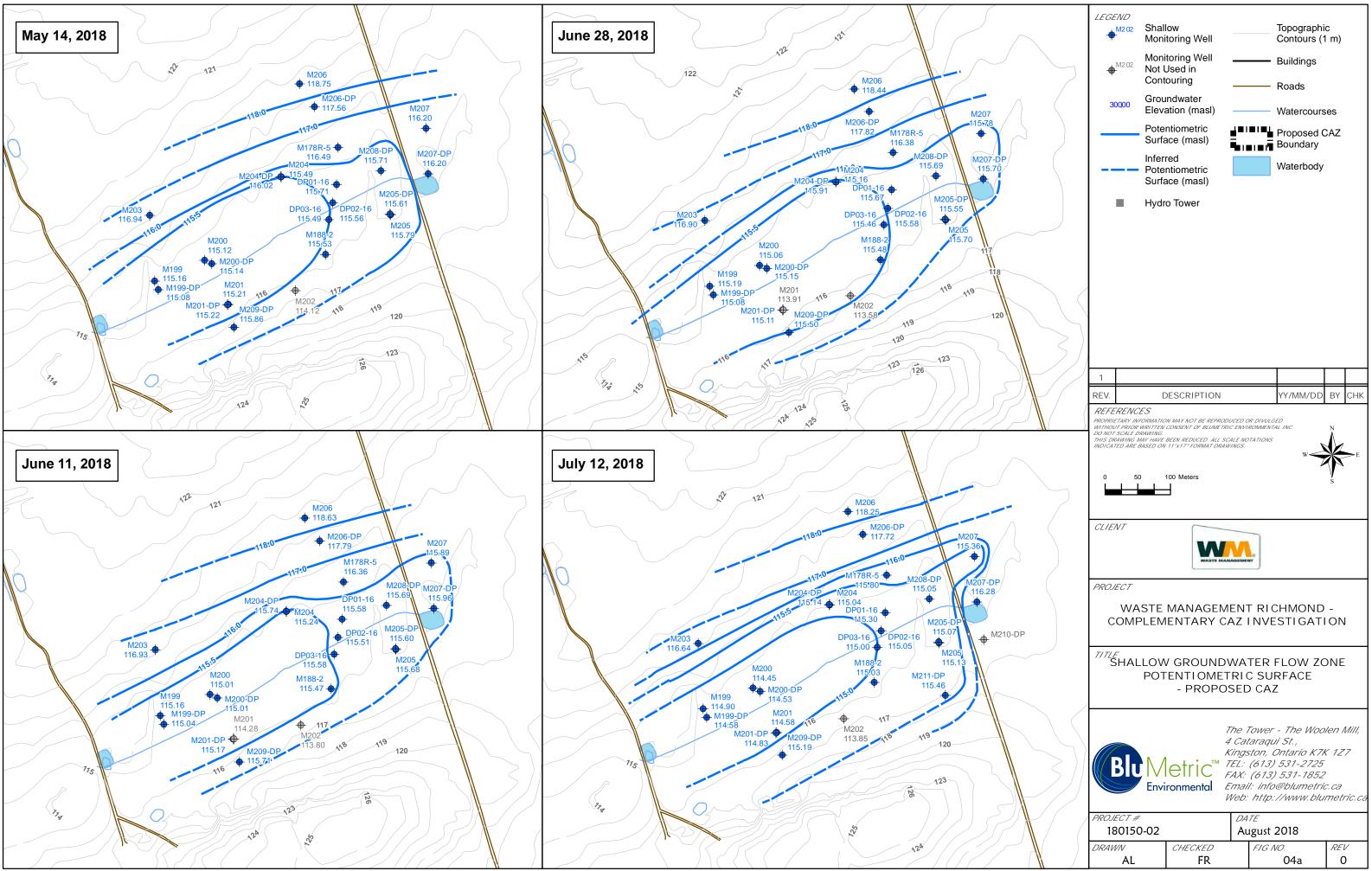
TABLES

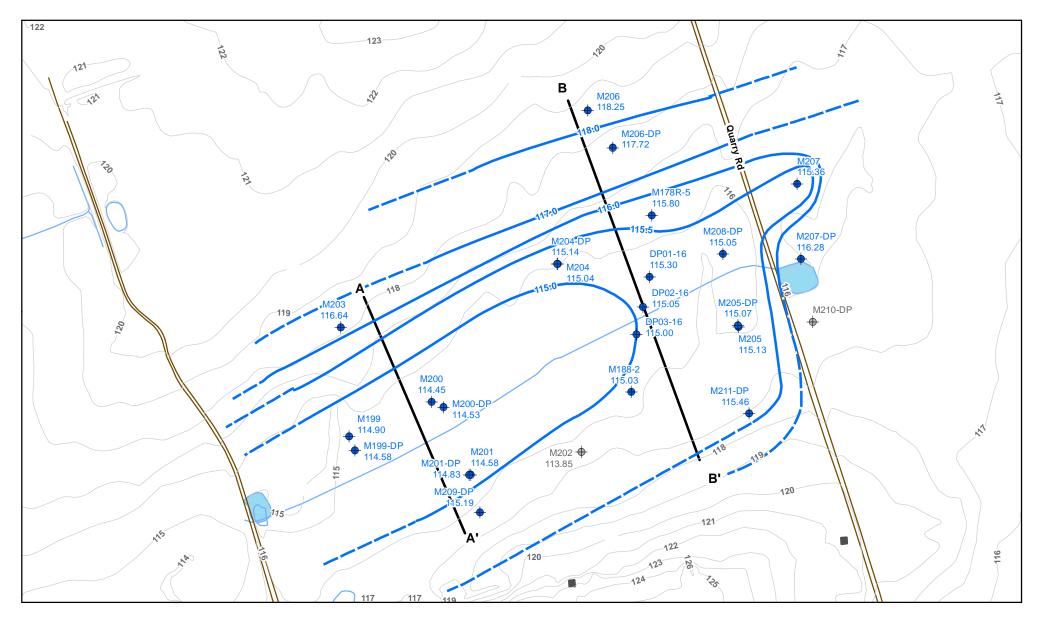

		Γ		M178R-5 M188-2 BOREHOLE BOREHOLE BOREHOLE M199 M200		200	M201 M203			M2	204		M205			M206			M207									
Parameter	1 Imite	0111#	2010 04 11	2019 06 29	2018-09-06	2019 06 11	2019 00 04		2018-05-04		2019 06 11	2010 00 04	2019 06 11	2019 00 06	2019 06 11	2019 00 06	2019 06 11	2019 00 06	2019 06 11	2019 00 06	2019 04 11	2019 06 29	2019 00 06	2018-06-11	2010 04 20	2019 00 06	2019 06 11	2018 00 06
General and Inorganic Paran		KUL"	2010-00-11	2010-00-20	2010-09-00	2010-00-11	2010-09-00	2010-05-04	2010-03-04	2010-03-04	2010-00-11	2010-09-00	2010-00-11	2018-09-08	2010-00-11	2010-09-00	2010-00-11	2010-09-00	2010-00-11	2010-09-00	2010-00-11	2010-00-20	2010-09-00	2010-00-11	2010-00-20	2010-09-00	2010-00-11	2010-09-00
Alkalinity	mg/L	200	430	420	410	290	290	-			310	320	250	260	270	270	310	320	280	300	310	310	360	330	330	370	260	280
Ammonia	mg/L	350	0.31	0.22	0.27	< 0.15	< 0.15	-	-		1.02	0.99	0.26	0.26	0.41	0.23	0.58	0.4	0.38	0.29	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	0.59	0.57
Boron	mg/L		0.17	0.22	0.2	0.38	0.68	-	-		0.7	0.95	0.20	0.20	0.22	0.34	0.50	0.58	0.50	0.79	0.062	0.07	0.098	0.057	0.057	0.081	0.44	0.67
Calcium	mg/L		110	110	100	72	69		-		62	57	73	78	51	67	120	120	57	59	99	100	130	93	98	110	75	84
Chloride	8	130	50	48	43	2.3	2.2	-	-		4.4	3	5	3.4	11	6.7	120	8.8	25	29	16	16	42	27	28	41	56	68
Conductivity	uS/cm	150	950	950	880	600	610	-	-		720	680	510	510	690	710	840	820	680	760	650	660	810	700	730	820	730	770
Dissolved Organic Carbon	<i>p,</i>	3.6	4.2	4.1	4	1.5	1.7	-	-		1.5	1.9	1.3	1.9	1.5	1.4	2.2	2.2	2.1	(note 1)	2.3	2.4	2.7	2.8	3.1	3.6	2.2	2.1
Iron	<u> </u>	0.18	0.19	0.17	0.16	< 0.1	< 0.1	-			< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	0.55	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.56	0.48	0.62	< 0.1	0.15
Magnesium	mg/L	0.10	24	24	22	21	22	-			31	30	16	14	19	27	26	25	23	25	12	12	15	16	16	19	25	30
Manganese	mg/L (034	0.025	0.026	0.024	0.023	0.031	-			0.077	0.064	0.017	0.087	0.07	0.031	0.22	0.19	0.073	0.043	0.034	0.018	0.027	0.14	0.13	0.21	0.064	0.08
Nitrate	mg/L	5.054	< 0.1	< 0.1	< 0.1	0.43	0.39				< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.49	< 0.1	0.11	< 0.1	0.91	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nitrite	mg/L		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	-		< 0.01	0.033	< 0.01	< 0.01	< 0.01	0.073	< 0.01	0.023	< 0.01	0.035	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Potassium	mg/L		3.9	4.2	4.6	4.7	6.8	-	-	-	11	12	3.2	3.5	5.5	7	7	7.4	6.3	9	1.1	1.1	1.4	4.2	4.8	4.9	6.2	8
Sodium	<u> </u>	109	49	52	48	24	33	-	-		33	33	6.8	7.2	60	34	17	14	34	62	16	16	19	22	23	28	33	18
Sulphate	mg/L		16	17	16	66	68	-	-	-	77	58	24	23	88	110	150	130	44	73	26	27	21	15	17	17	33	34
	6	452	540	690	485	380	340	-	-	-	450	375	305	270	420	395	555	470	395	415	390	510	445	415	510	435	440	430
Volatile Organic Compound	0		2.0	070		500	510	I			150	515	505	210	120	575			575	115	570	2.0	115	115	0.0	155		
1.1.1-Trichloroethane	mg/L		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-			< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00011	< 0.0001	< 0.0001	< 0.0001
1.1.2.2-Tetrachloroethane	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
1,1,2-Trichloroethane	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
1.1-Dichloroethane	mg/L		0.00047	0.00052	0.00053	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00075	0.00075	0.0011	< 0.0001	< 0.0001
1.1-Dichloroethylene	mg/L (0.004	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
1.2-Dichlorobenzene (o)	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
1.2-Dichloroethane	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
1.3.5-Trimethylbenzene	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
1.3-Dichlorobenzene (m)	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
1.4-Dichlorobenzene (p)	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
1.4-Dioxane	mg/L (0.001	0.0056	0.0059	0.0058	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0011	0.0014	0.003	0.001	0.0013	0.0028	< 0.001	< 0.001
Benzene	mg/L (0.0001	< 0.0001	0.0001	< 0.0001	< 0.0001	-	-		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00011	< 0.0001
Chlorobenzene	mg/L		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chloroethane	mg/L		< 0.001	0.00063	< 0.0003	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.001	0.00033	< 0.0003	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chloromethane	mg/L		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	-	-	-	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cis-1,2-Dichloroethylene	mg/L		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Dichloromethane	mg/L		< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	-	-	-	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Ethylbenzene	mg/L (0.001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
m+p-Xvlene	mg/L		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	0.00014	< 0.0001	< 0.0001	< 0.0001	0.00028	< 0.0001	< 0.0001	< 0.0001	0.00013	0.00022	0.00014	0.00011	< 0.0001	< 0.0001	< 0.0001	0.00019	0.00014
o-Xvlene	mg/L		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.00015	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Styrene	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Tetrachloroethylene	mg/L		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Toluene	mg/L (0.012	0.0004	0.00023	< 0.0002	< 0.0002	< 0.0002	-	-	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.00025	< 0.0002
Total Xylenes	mg/L	0.15	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	0.00014	< 0.0001	< 0.0001	< 0.0001	0.00043	< 0.0001	< 0.0001	< 0.0001	0.00013	0.00022	0.00014	0.00011	< 0.0001	< 0.0001	< 0.0001	0.00019	0.00014
Trans-1,2-dichloroethylene	mg/L		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-	-	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Trichloroethylene	mg/L		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-	-		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Vinyl Chloride	mg/L		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	-	-		< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
*RUL: Reasonable Use Limit																												

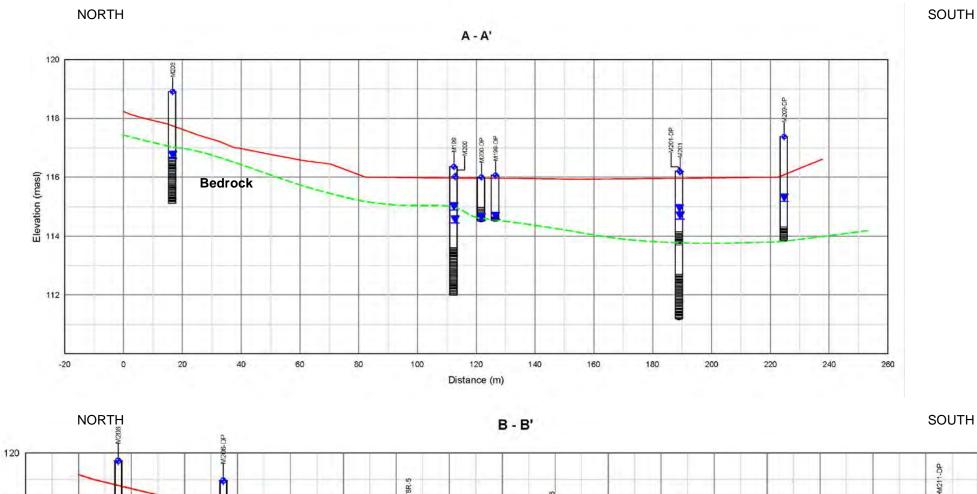

Note 1: No results for dissolved organic carbon from M204 because of insufficient volume of sample




FIGURES



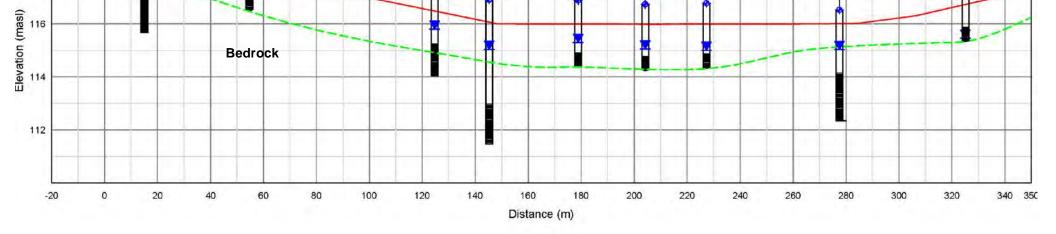


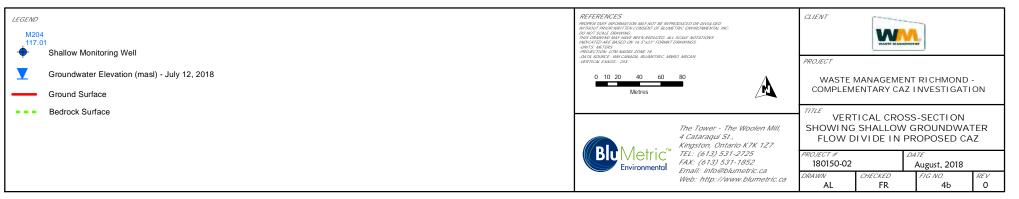



``````````````````````````````````````						
	LEGEND					
	_		etric Surface (masl) -	May 14, 2018		
		Surface W	nic Contour Lines ater			
5		Property B				
$\langle$			CAZ Boundary			
	M53-4     M5-3     M5		roundwater Zone Ele [.] ot Used in Contouring			
	• M35		e Location	,		
		,				
$\sim$						
~						
	1				1	
	REV.		DESCRIPTION		YY/MM/DD	BY CHK
	REFEREN	INFORMATIO	N MAY NOT BE REPROD	ICED OR DIVULG	ED	Δ
	DO NOT SCALE	DRAWING.	CONSENT OF BLUMETRI BEEN REDUCED. ALL SC.		al INC.	A
	INDICATED AR	E BASED ON	11"x17" FORMAT DRAW	INGS.		
	0 40	80	160	240	320	
			Metres 1:5,000			
	CLIENT					
			WASTE MAN	AGEMENT		
	PROJECT					
	w	ASTE	MANAGEME	NT RIC	HMOND -	
	COM	IPLEM	ENTARY CA	ZINVE	STIGATIO	N
$\sim$						
	TITLE					
	SHAL		GROUND			ONE
35	SHAL		NTIOMETR		RFACE -	ONE
	SHAL				RFACE -	
00	SHAL		NTIOMETR LANDFII	L ARE	RFACE – A	
	SHAL		NTIOMETR LANDFII	L ARE	RFACE – A	
	SHAL	POTEI	NTIOMETR LANDFII	The Tower	RFACE - A - The Wood II St., Optaria K 7	len Mill,
	SHAL	POTEI	NTIOMETR LANDFII	The Tower	RFACE - A - The Wood II St., Optaria K 7	len Mill,
Road	SHAL			The Tower Cataraqu (ingston, of FEL: (613) (AX: (613)	RFACE - A - The Wood II St., Optaria K 7	len Mill, K 127
Road	SHAL		NTIOMETR LANDFII	The Tower Cataraqu (ingston, o TEL: (613) TAX: (613) TaX: (613)	<b>RFACE –</b> <b>A</b> <i>i St.,</i> <i>Ontario K7R</i> <i>531-2725</i> <i>531-1852</i>	len Mill, K 127 S.ca
Road	SHAL	POTEI	NTIOMETR LANDFII	The Tower Cataraqu (ingston, o TEL: (613) TAX: (613) TaX: (613)	<b>RFACE –</b> <b>A</b> <i>i St.,</i> Ontario K7K 531-2725 531-1852 © Øblumetrid	len Mill, K 127 S.ca
	SHAL	POTEI	NTIOMETR LANDFII	The Tower Cataraqu (ingston, o TEL: (613) (AX: (613) (AX: (613) (Tail: info (Veb: http.	<b>RFACE –</b> <b>A</b> - The Wool i St., Ontario K7K 0 531-2725 0 531-1852 0 620 - //www.blu	len Mill, K 127 S.ca
	SHAL		NTIOMETR LANDFII	The Tower Cataraqu (ingston, o TEL: (613) (AX: (613) (AX: (613) (AX: (613) (AX: (613) (ATE)	RFACE – A - The Wook in St., Ontario K7k ) 531-2725 ) 531-1852 0@blumetrid ://www.bluk	len Mill, K 127 S.ca



N:\GIS_PROJECTS\PROJECTS\WM\Richmond\180150-02WXD\2018-08-13\Figure_4a_GWElevs.mxd




A178R-5 -DP02-16 10 -DP03 -M188f

M

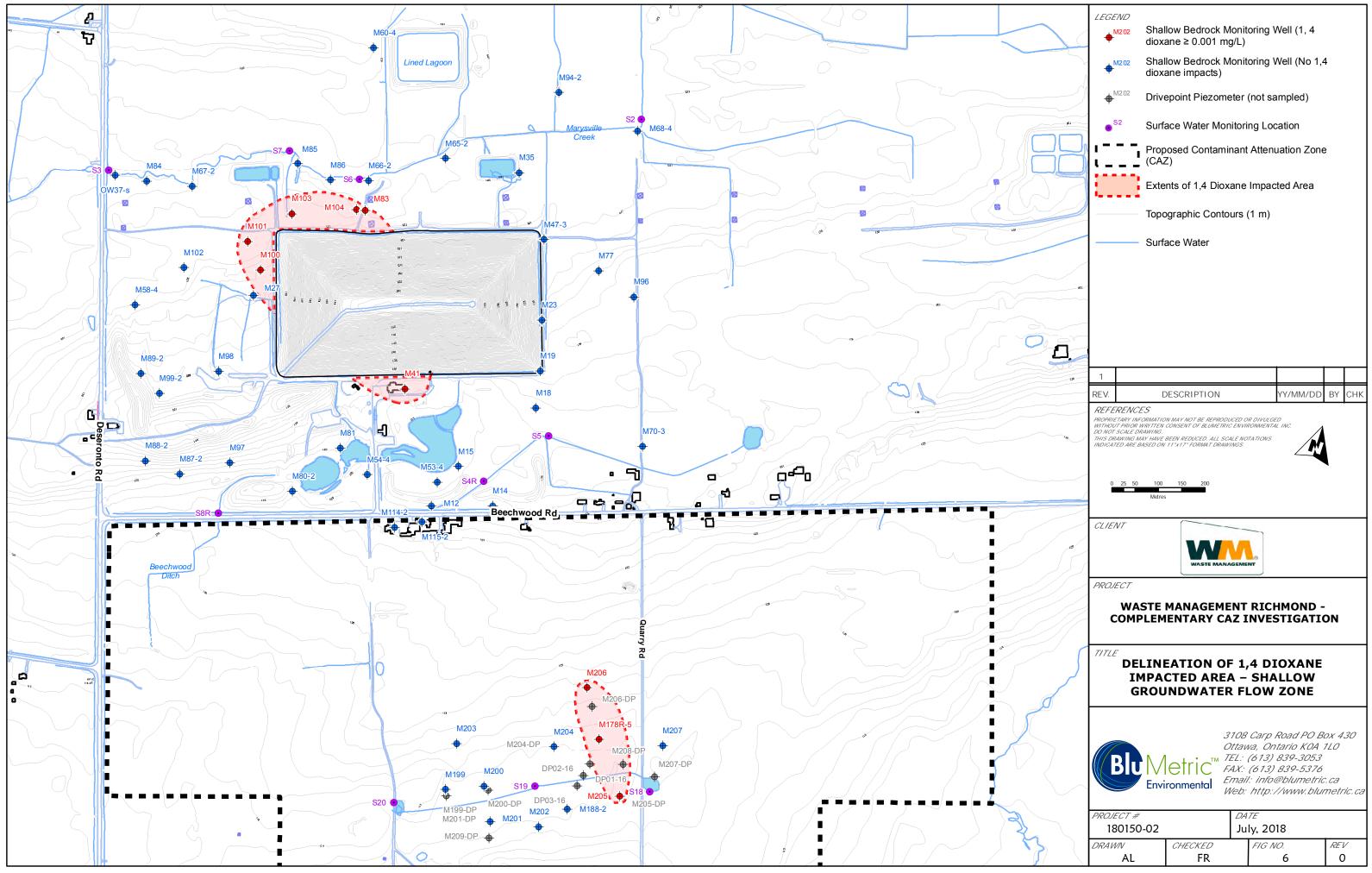
M



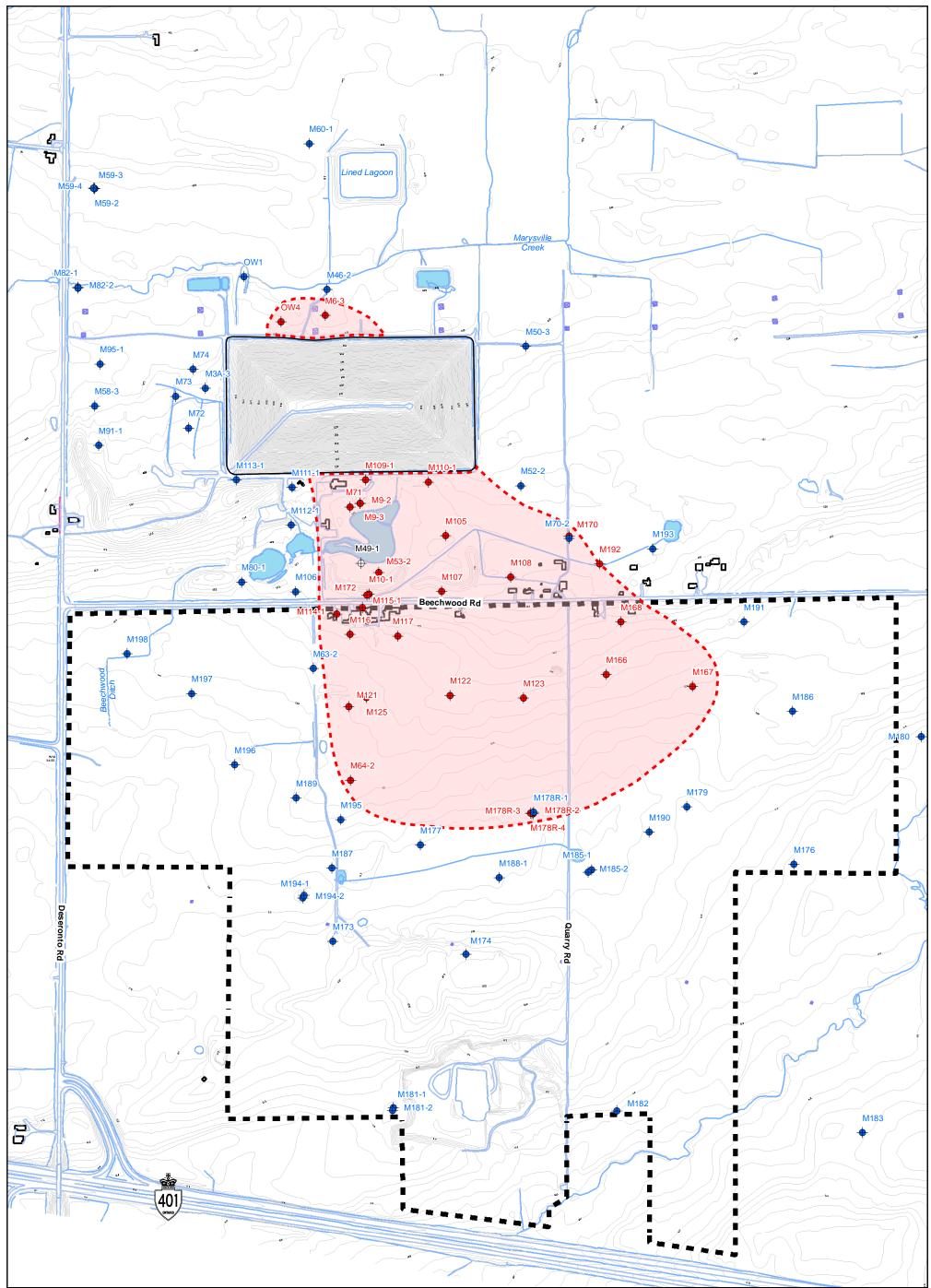


118




#### LEGEND

- Potentiometric Surface (masl) May 14, 2018
- Topographic Contour Lines
- Surface Water


#### Property Boundary

- Proposed CAZ Boundary
- ^{M166} Intermediate Groundwater Zone Elevation Monitor

#### REFERENCES CLIEN 7 MAY NOT BE REPRODUCED OR DIVULGED INSENT OF BLUMETRIC ENVIRONMENTAL IN WM /KAWING. MAY HAVE BEEN REDUCED. ALL SCALE NOT, BASED ON 11"x17" FORMAT DRAWINGS. INDICATED ARE . -UNITS: METERS PROLECTION: UTM NADB3 ZONE 18 DATA SOURCE: WM CANADA, BLUMETRIC, MNRO, NRCAN PROJECT WASTE MANAGEMENT RICHMOND - COMPLEMENTARY CAZ INVESTIGATION 25 50 100 150 200 Metres 1:8,000 TITLE INTERMEDIATE BEDROCK The Tower - The Woolen Mill, 4 Cataraqui St., Kingston, Ontario K7K 127 TEL: (613) 531-2725 FAX: (613) 531-1852 Email: info@blumetric.ca Web: http://www.blumetric.ca GROUNDWATER FLOW ZONE POTENTI OMETRIC SURFACE **Bu**Metric[™] 180150-02 July, 2018 Environmental FIG NO. CKEL REV 5 0 AL FR



N:/GIS_PROJECTS\PROJECTS\WM\Richmond\180150-02\MXD\2018-07-24-CAZ Report\Figure_6_Delineation_ShallowBedrock.mxd



#### LEGEND

1	M6 4-2	
	1410 4-2	

- Intermediate Bedrock Monitoring Well (No 1,4 dioxane impacts)  $\phi$ ^{M121} Intermediate Bedrock Monitoring Well (1,4 dioxane ≥ 0.001 mg/L)
- . M121 Intermediate Bedrock Monitoring Well (no results1,4 dioxane)
- Topographic Contour Lines
- Surface Water
- -Proposed Contaminant Attenuation Zone (CAZ)
- 65 Approximate Extent of Known 1,4 Dioxane Impacted Area

#### REFERENCES CLIEN7 MAY NOT BE REPRODUCED OR DIVULGED ONSENT OF BLUMETRIC ENVIRONMENTAL IN WM UO NUT SCALE DRAWING THIS DRAWING MAY HAVE BEEN REDUCED ALL SCALE NOTA. INDICATED ARE BASED ON 11"x17" FORMAT DRAWINGS. MITTS: METERS PROLECTION: UTM NADR3 ZONE 18 DATA SOURCE: WM CANADA, BLIMETRIC, MNRO, NRCAN PROJECT WASTE MANAGEMENT RICHMOND -COMPLEMENTARY CAZ INVESTIGATION 100 0 25 50 150 200 Metres 1:8,000 TITLE DELINEATION OF 1,4 DIOXANE IMPACTED AREA – INTERMEDIATE BEDROCK GROUNDWATER FLOW ZONE The Tower - The Woolen Mill, 4 Cataraqui St., Kingston, Ontario K7K 127 TEL: (613) 531-2725 FAX: (613) 531-1852 Email: info@blumetric.ca Web: http://www.blumetric.ca **Bu**Metric[™] 180150-02 July, 2018 Environmental FIG NO. REV IECKEL 7 0 AL FR





### APPENDIX A

Borehole Logs



Well ID: M196

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335325 Northing: 4902194 Field Personnel: B.McC.

Image: Constraint of the second se	
Pepth Depth Oct	K (m/sec)
ft         m         -3         -         -         -         -         -         -         -         Elev. M196 117.89m TOC         -         S/U 0.58m         -         S/U 0.58m         -         S/U 0.58m         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	
1 Topsoil over brown silty Clay. 117.00	
1     Topsoil over brown silty Clay.     117.00     117.00     -     -     -     -     -     200mm HSA to depth 1.83m     -     140mm OD steel casing cement gro       5     7     2     116.00     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -	puted to
7       2         9       115.00         11       114.00         12       4	
11       114.00       F       - weak bedrock3.4m         13       4       - weak bedrock3.9m       - weak rock 4.2 - 4.3m and 4.8m	
15       -weak bedrock4.9m and 5 - 5.06m         17       -weak bedrock 5.4m and 5.6 - 5.7m         19       -weak bedrock sulfur ordours 5.9 - 6	
19       6         21       6         23       Limestone             111.00       6         - weak bedrock, sulfur odours 5.9 - 6.         - weak bedrock 6.2m         - weak bedrock 6.2m	.0m
Light grey, lithographic fossiliferrous limestone with undulating shale partings. Stylolites are common. Numerous schict stringshout	
17	n
37       106.00       F	
37       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00       106.00	
53     16       53     101.00       55     25	

Drilled By: GET Drilling Ltd. Drill Method: Rotary Tri-cone Hole Size: 3.87" (98mm) Drill Date: April 2, 13, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.





### Well ID: M196

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335325 Northing: 4902194 Field Personnel: B.McC.

	S	UBSURFACE PROFILE		uo	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
60 62 64 64 65 66 66 66 70 70 70 70 70 70 70 70 70 70		Limestone         Light grey, lithographic fossiliferrous         imestone with undulating shale         partings. Stylolites are common.         Numerous calcite stringers throughout.         Occassional coarse crystalline zones.	99.00 98.00 97.00 96.00 95.00 94.00 93.00 92.00 91.00 90.00 89.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00				- weak bedrock 19.4 and 19.5m	
112 114 114 116 116 118	5		83.00 82.00 81.00					
Drilleo		T Drilling Ltd. Drill Angle Rotary Tri-cone Azimuth:	e: Vertical n.a.					тм

Drill Method: Rotary Tri-cone Hole Size: 3.87" (98mm) Drill Date: April 2, 13, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M197

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### *Easting:* 335175 *Northing:* 4902260 *Field Personnel:* B.McC.

	S	UBSURFACE PROFILE		5	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
ft m -3 ∎ -1 ∎		Ground Surface					- Elev. M197 120.03m TOC - S/U 0.48	
1	$\sim$	Topsoil	119.00				- 200mm HSA to depth 3.05m	
3		Silty Clay Brown, dry.	118.00			-	- 140mm OD steel casing cement grouted to - broken shaley limestone.	
ft m -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		Till Brown, silty sand, some clay, trace gravel.	117.00			-		
11 4			116.00			-		
15			115.00			-		
=-			114.00			-	- weak bedrock 5.5m	
21			113.00					
19 6 21 23 25 8		Limestone	112.00					
27 <b></b> 29 <b></b>		Light grey, lithographic fossiliferrous limestone with undulating shale	111.00				- weak bedrock8.5m	
31 33 10		partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.	110.00			-		
35			109.00			_		
37 39 12			108.00					
41			107.00			-		
I =_			106.00			-	- weak bedrock14m	
45 14 47 49			105.00					
51 53 16			104.00			-		
55			103.00					
57			102.00				- weak rock 17.5m	
Drill M Hole S	lethod: F Size: 3.8	T Drilling Ltd.Drill AngleRotary Tri-coneAzimuth:7" (98mm)Datum: N.il 2, 13, 2018Checked	n.a. AD83				Blu Metri Environmer	C [™]

Well ID: M197

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### *Easting:* 335175 *Northing:* 4902260 *Field Personnel:* B.McC.

Bit     Sobsokrace bkolice       Depth     Stratigraphy       Stratigraphy     Stratigraphy       Mell Construction     (m)       Mell Construction     (m)       Fracture     %       Fracture     %       Fracture     %	Comments
60	sk19m
66     99.00     66          70     21     98.00     66	k 20.5m
70     98.00       72     97.00       74     97.00	
74     97.00     97.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     95.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00     96.00 <td< td=""><td>ck 23.5m</td></td<>	ck 23.5m
80     Limestone     95.00     E     E     - weak bec       82     25     Light grey, lithographic fossiliferrous     94.00     E     E       84     partings, Stylolites are common     94.00     E     E     - weak bec	sk 25m
partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones. 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 9	sk 26.5m
90 92.00 92.00 92.00 - weak bec	ok 28m
94 91.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.	ck 29.5m
100 - 31 - weak bec	sk 31m
104     88.00     88.00         106     87.00          108     33	sk 32.5m
	sk 34m
112         End of Borehole           114         35	
International     International     International     International       112     International     International     International     International       114     35     International     International     International       118     International     International     International     International	

Drilled By: GET Drilling Ltd. Drill Method: Rotary Tri-cone Hole Size: 3.87" (98mm) Drill Date: April 2, 13, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M198

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 0 Northing: 0 Field Personnel: B.McC.

	S	UBSURFACE PROFILE		5	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
ft         m           -1         -1           1         -1           3         -1           3         -1           3         -1           1         -1           3         -1           3         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1           1         -1		Ground Surface	119.73				- M198 120.24m TOC - S/U 0.51m	
1	$\sim$	Topsoil						
3	Ħ	Sandy Clay Brown, wet.	119.00				- 200mm HSA to depth 3.66m - 140mm OD steel casing cement grouted to 3.66m	
	H		118.00					
9		<i>Till</i> Brown, with cobbles.	117.00			-		
13 4			116.00					
15 17			115.00					
19 6 21			114.00					
21 <del>-</del> 23 -			113.00				- weak bedrock 6.5 - 6.7m	
25		Limentene	112.00					
27 <b></b> 29 <b></b>		<b>Limestone</b> Light grey, lithographic fossiliferrous limestone with undulating shale	111.00				- weak bedrock8.4m - weak bedrock8.7m	
31 33 10		partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.	110.00			-		
35		Occassional coarse crystalline zones.	109.00			-		
37 39 12			108.00					
41 43			107.00					
45 14			106.00			-	- weak rock 13.5m	
45 14 47 49			105.00					
51 53 16			104.00					
55			103.00					
57			102.00					
			e: Vertical					
		Rotary Tri-cone Azimuth: 7" (98mm) Datum: N					BluMetri	C [™]

Drill Date: April 2, 16, 2018

Checked By: M.C.



Well ID: M198

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 0 Northing: 0 Field Personnel: B.McC.

	S	UBSURFACE PROFILE		u	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
60         19           62         64           64         19           66         19           66         19           67         19           68         10           74         10           74         10           80         10           81         10           92         10           104         10           104         10           108         10           112         114		Limestone Light grey, lithographic fossiliferrous limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.	101.00 99.00 98.00 97.00 96.00 95.00 94.00 93.00 92.00 91.00 89.00 88.00 88.00 87.00 86.00				- weak bedrock 20m	
116 118		End of Borehole	84.00					
		T Drilling I to Drill Apole			1			·]

Drilled By: GET Drilling Ltd. Drill Method: Rotary Tri-cone Hole Size: 3.87" (98mm) Drill Date: April 2, 16, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M199

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### *Easting:* 335717 *Northing:* 4902031 *Field Personnel:* B.Mc.

	S	UBSURFACE PROFILE		uc	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
ft  m -3		Ground Surface					MOE Well tag # A228296 - Elev. M199 116.36m TPVC - s/u 0.84m	
2 1 1 1 1 1 1 1 1 1 1 1 1 1		Ground Surface Clay Brown. Limestone Light grey, lithographic fossiliferrous limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.	115.51 - - - 115.00- - - - - - - - - - - - - - - - - - -				<ul> <li>150mm solid flicht auder to 1.04m</li> <li>Fracture or weak bedrock 0.5m</li> <li>100sqmm steel casing with bentonite gravel seal</li> <li>Fracture or weak bedrock 0.87m</li> <li>water bearing fracture 1.35m</li> <li>uster bearing fracture 1.35m</li> <li>1.5m x 50mm slot 10 PVc screen within #3 silica sand pack</li> <li>fracture/weak bedrock 2.35m</li> <li>weaker bedrock or fracture 2.55m</li> <li>weak bedrock 2.85 - 3.0m</li> <li>water bearing fracture 3.1 - 3.18m</li> <li>weak bedrock 3.43m</li> </ul>	
13		End of Borehole	- <u>112.00</u> - -					

Drilled By: GET Drilling Ltd. Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 3, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



# Well ID: M199!8 D

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335722 Northing: 4902012 Field Personnel: B.McC.

	S	UBSURFACE PROFILE		Б	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-2		Ground Surface	- 116.00 - - 115.17 -				- Elev. M199-DP 116.06 m TOC - TOC s/u 0.89m	
0 - - - - - - - - - - - - - - - - - - -		Clay Brown End of Borehole					- bentonite gravel seal	
Drill M Hole S	ethod: I	Metric Environmental Inc. Drill Angle Drive Point Azimuth: 25" (32mm) Datum: N ril 24, 2018 Checked St	n.a. AD83				<b>Bu</b> Metri Environmer	C [™] ntal

### Well ID: M200

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### *Easting:* 335796 *Northing:* 4902060 *Field Personnel:* B.Mc.

	S	SUBSURFACE PROFILE		u	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation	Fracture Frequency/Run	Comments	K (m/sec)
-3 ^{ft} m -3 - -1 -			- 116.00 <i>-</i> -				MOE Well tag # A228384 - Elev. M200 116.02m TPVC - s/u 0.62m	
		Ground Surface Clay Brown.	<u>115.40</u> - 115.00- - -				- 150mm solid flight auger to 0.91m - 100sqmm steel casing with bentonite gravel seal	
		<b>Limestone</b> Light grey, lithographic fossiliferrous limestone with undulating shale partings. Stylolites are common.	- - 114.00 - -				- Fracture trace water 1.37m - Fracture trace water 1.82m	
9 		Numerous calcite stringers throughout. Occassional coarse crystalline zones.	- - 113.00 - - -				- 1.5m x 50mm slot 10 PVc screen within #3 silica sand pack - weak bedrock, water bearing fractures, sulfur odour 2.44 - 3.05m	
		End of Borehole	- 112.00 - - -					

Drilled By: GET Drilling Ltd. Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 17, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



# Well ID: M200!8 D

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335804 Northing: 4902056 Field Personnel: B.McC.

	S	UBSURFACE PROFILE		E	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation	Fracture Frequency/Run	Comments	K (m/sec)
-4 - m -4 - m 		Ground Surface	- 116.00 - - 115.18				- Elev. M200-DP 116.00m TOC - TOC s/u 0.81m	
0 - - - - - - - - - - - - - - - - - - -		<b>Clay</b> Brown	- 115.00				- bentonite gravel seal	
_ 1		End of Borehole						
		Metric Environmental Inc.Drill AngleDrive PointAzimuth:	e: Vertical n.a.					тм

Hole Size: 1.25" (32mm) Drill Date: April 24, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M201

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335830 Northing: 4901993 Field Personnel: B.McC.

Depth	Stratigraphy	BUBSURFACE PROFILE	Elevation (m)	Well Construction	Rock Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-1			- 116.00-				MOE Well tag # A228378 - Elev. M201 116.18m TPVC - s/u 0.71m	
		Ground Surface	115.47					
1		Till	- - 115.00 - -				- 150mm solid flight auger to 2.40m - 100sqmm steel casing with bentonite gravel seal	
5 1 1 1 1 1 1 1 1 1 1 1 1		Brown, clayey Sand.	- - 114.00 -					
2 7 1 9		<b>Limestone</b> Light grey, lithographic fossiliferrous	- - 113.00-					
		limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.	- - 112.00 - - -				<ul> <li>water bearing fracture 3.05m</li> <li>water bearing fracture 3.2m</li> <li>1.5m x 50mm slot 10 PVc screen within #3 silica sand pack</li> <li>weak bedrock with sulfur odour 3.87m</li> </ul>	
		End of Borehole	444.00					
15			111.00-					
Drilleo	d By: G	ET Drilling Ltd. Drill Angle	e: Vertical					

Drilled By: GET Drilling Ltd. Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 18, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.





# Well ID: M201!8 D

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335828 Northing: 4901991 Field Personnel: B.McC.

	S		1	ion	Rock	_		
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-4 - -4 - - - - - - - - - - - - - - - -			- 116.00 -				- Elev. M201-DP 116.20m TOC - TOC s/u 0.99m	
		Ground Surface	115.21					
		<b>Till</b> Brown, clayey Sand.	115.00 - - - - - - - - - - - - - - - -				- bentonite gravel seal	
		End of Borehole	-					
	1	-	1				- 1470	

Drilled By: BluMetric Environmental Inc. Drill Method: Drive Point Hole Size: 1.25" (32mm) Drill Date: April 18, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M202

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### *Easting:* 335929 *Northing:* 4902013 *Field Personnel:* B.McC.

	S		1	tion	Rock Quality	с		
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-3 <del>[</del>				FT			MOE Well tag # A228379	
-1-			- 117.00				- Elev. M202 117.22m TPVC - s/u 0.75m	
		Ground Surface	116.48					
		Overburden	-  116.00 - -				- 150mm solid flight auger to 1.37m - 100sqmm steel casing with bentonite gravel seal	
5 - 2		Limestone Light grey, lithographic fossiliferrous limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.	- - 115.00 - - -				- weak bedrock, multiple fractures, trace water 1.68 - 2.29m	
9			- 114.00- -				- weak bedrock 2.37m - weak bedrock zones 2.5 - 2.74m	
		End of Borehole					- weak bedrock 3.05m	
Drillec Drill N	l By: Gl lethod:	ET Drilling Ltd. Drill Angl Rotary Air Hammer Azimuth:	e: Vertical n.a.	<u> </u>		<u> </u>		• TM

Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 18, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.





### Well ID: M203

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335708 Northing: 4902128 Field Personnel: B.McC.

				5	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
ft m 1		Ground Surface Limestone Light grey, lithographic fossiliferrous limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.					MOE Well tag # A228386 - Elev. M203 118.91m TPVC - s/u 0.73m - 150mm solid flight auger to 1.07m - 100sqmm steel casing with bentonite gravel seal - weak bedrock 2.13m - 1.5m x 50mm slot 10 PVc screen within #3 silica sand pack - fracture trace water 2.59m	
		End of Borehole	- 115.00 — -					
	ft m 		Image: Second state stringers       Ground Surface         Image: Second stringers       Limestone         Light grey, lithographic fossiliferrous       Limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.         Image: Second stringers       Limestone         Image: Second stringers       End of Borehole	ft m Ground Surface Ground Surface 118.18 - - - - - - - - - - - - -	f       m       Ground Surface       118.18         Ground Surface       118.00       -         Image: Second Surface       117.00       -         Image: Second Surface       -       - </td <td>film       Ground Surface       118.18         Image: Second Surface       118.18         Image: Second Surface       118.00         Image: Second Surface       118.00         Image: Second Surface       117.00         Image: Second Surface       116.00         Image: Second Surface       116.00         Image: Second Surface       115.00</td> <td>find       Ground Surface       118.18         Image: Strate Strate</td> <td>ft       m       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       B       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A</td>	film       Ground Surface       118.18         Image: Second Surface       118.18         Image: Second Surface       118.00         Image: Second Surface       118.00         Image: Second Surface       117.00         Image: Second Surface       116.00         Image: Second Surface       116.00         Image: Second Surface       115.00	find       Ground Surface       118.18         Image: Strate	ft       m       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       B       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A

Drilled By: GET Drilling Ltd. Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 18, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M204

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### *Easting:* 335912 *Northing:* 4902187 *Field Personnel:* B.Mc.

-3       m       MOE Well tag # A228385         -1       Ground Surface       116.06         1       - Sandy Clay       - Su 0.86m         1       Brown, wet to saturated.       - 150mm solid flight auger to 1.5m         -       - 100sqmm steel casing with bentonite gravel seal         1       - 100sqmm steel casing with bentonite gravel seal         1       - weak bedrock 2.19m         1       - weak bedrock 2.19m	Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Rock Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
1       -150mm solid flight auger to 1.5m         3       -100sqmm steel casing with bentonite gravel seal         5       -100sqmm steel casing with bentonite gravel seal         7       -10sqmm steel casing with bentonite gravel seal         9       -1114.00         9       -1114.00         9       -1114.00         9       -1114.00         9       -1114.00         9       -1114.00         1114.00       -1114.00         9       -1114.00         1114.00       -1114.00         9       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00         1114.00       -1114.00          1114.00       -1114.00	-3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Ground Surface	- - 116.06				MOE Well tag # A228385 - Elev. M204 m TPVC	
9 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7	3 3		<b>Sandy Clay</b> Brown, wet to saturated.					- 100sqmm steel casing with bentonite gravel	
Light grey, intrographic lossifier ous limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. 11 - Occassional coarse crystalline zones.	7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Limestone	- - 114.00- - -				- weak bedrock 2.19m	
			limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.	113.00- - -					
13 - 4 112.00 1.5m x 50mm slot 10 PVc screen within #3 silica sand pack - weak bedrock trace water 4.11 - 4.42m				- 112.00 - -				silica sand pack	
End of Borehole			End of Borehole	-					

Drilled By: GET Drilling Ltd. Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 17, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: F.R.



# Well ID: M204!8 D

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335909 Northing: 4902187 Field Personnel: B.McC.

	S	UBSURFACE PROFILE		E	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-4 -1 			- 117.00 - -				- Elev. M204-DP 117.15m TOC - TOC s/u 1.14m	
_		Ground Surface	116.01 116.00					
	$\land \land $	<b>Sandy Clay</b> Brown, wet to saturated.	- 115.00 - - - - - - - - - - - - - - - - - -				- bentonite gravel seal	
		End of Borehole	-	<u>,</u>				
Drilled	l By: <mark>Blu</mark>	Metric Environmental Inc. Drill Angle	e: Vertical					

Drilled By: BluMetric Environmental Inc. Drill Method: Drive Point Hole Size: 1.25" (32mm) Drill Date: April 17, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M205

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

#### Easting: 336078 Northing: 4902129 Field Personnel: B.McC.

	SUBSURFACE PROFILE	1	ion	Rock			
Depth Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-3 -1	Ground Surface	- - 116.00 115.83				MOE Well tag # A228367 - Elev. M205 116.58m TPVC - s/u 0.75m	
	Sandy Clay Brown, wet to saturated. Light grey, lithographic fossiliferrous limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout.	- - - - - - - -				- 150mm solid flight auger to 1.07m - 100sqmm steel casing with bentonite gravel seal	
	Occassional coarse crystalline zones.	- 114.00 - -				- weak bedrock, fracture, water bearing 2.07m	
		- - 113.00 - -				<ul> <li>water bearing fracture 2.59m</li> <li>1.5m x 50mm slot 10 PVc screen within #3 silica sand pack</li> <li>fracture trace water 3.17m</li> <li>water bearing fracture 3.29m</li> </ul>	
	<u>去</u> End of Borehole						
Drilled By: (	GET Drilling Ltd Drill Angle	e. Vertical					

Drilled By: GET Drilling Ltd. Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 17, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



# Well ID: M205!8 D

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 336077 Northing: 4902130 Field Personnel: B.McC.

	S	SUBSURFACE PROFILE	1	uo	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-4 -1 - - - - - - - - - - - - - - - - -		Ground Surface	- - 116.00- - 115.67				- Elev. M205-DP 116.55m TOC - TOC s/u 0.88m	
		Sandy Clay Brown, wet to saturated. End of Borehole	- - 115.00				- bentonite gravel seal	
4 – Drilled	By: Blu	uMetric Environmental Inc. Drill Angle	e: Vertical					

Drilled By: BluMetric Environmental Inc. Drill Method: Drive Point Hole Size: 1.25" (32mm) Drill Date: April 17, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



Well ID: M206

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335939 Northing: 4902329 Field Personnel: B.McC.

	S	SUBSURFACE PROFILE		n	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
ft m -3		Ground Surface	- - - 118:89 -				MOE Well tag # A228368 - Elev. M206 119.70m TPVC - s/u 0.82m	
3 		Overburden  Light grey, lithographic fossiliferrous limestone with undulating shale partings. Stylolites are common. Numerous calcite stringers throughout. Occassional coarse crystalline zones.	118.00 				<ul> <li>- 150mm solid flight auger to 1.07m</li> <li>- 100sqmm steel casing with bentonite gravel seal</li> <li>- weak bedrock, fracture, water bearing 2.13m</li> <li>- 1.5m x 50mm slot 10 PVc screen within #3 silica sand pack</li> </ul>	
		End of Borehole	-					

Drilled By: GET Drilling Ltd. Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 17, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: F.R.



# Well ID: M206!8 D

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335960 Northing: 4902295 Field Personnel: B.McC.

	S	UBSURFACE PROFILE		u	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-4 -4 - - - - - - - - - - - - - - - - -			- - - - 118.00-				- Elev. M206-DP 118.95m TOC - TOC s/u 1.16m	
-		Ground Surface	117.79 _					
0 		Overburden.					- bentonite gravel seal	
- - - - - - 6-		End of Borehole	- 116.00-					
Drill M Hole S	lethod:   Size: 1.2	IMetric Environmental Inc.Drill AngleDrive PointAzimuth: n25" (32mm)Datum: Nril 24, 2018Checked	n.a. AD83		<u>.</u>	I	Bu Metri Environmer	C [™]

Well ID: M207

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 336132 Northing: 4902264 Field Personnel: B.McC.

	S	SUBSURFACE PROFILE		ч	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-3 ^{ft} m -3			- 117.00 -				MOE Well tag # A228297 - Elev. M207 117.31m TPVC - s/u 0.86m	
		Ground Surface	116.45	- 88 88-				
1 1 3 3		Overburden, brown, clayey           Limestone           Light grey, lithographic fossiliferrous           limestone with undulating shale           partings. Stylolites are common.	- - 116.00- - -				<ul> <li>150mm solid flight auger to 1.43m</li> <li>W/L elev. 115.89m recorded June 11, 2018</li> <li>weak bedrock, fracture 0.6, 0.76m</li> <li>100sqmm steel casing with bentonite gravel seal</li> </ul>	
5		Numerous calcite stringers throughout. Occassional coarse crystalline zones.	- - 115.00 -				- weak bedrock 1.03, 1.40m	
9 			- - 114.00 - - -				<ul> <li>weak bedrock 2.13, 2.40,2.52m</li> <li>1.5m x 50mm slot 10 PVc screen within #3 silica sand pack</li> <li>weak bedrock 2.7m</li> <li>weak bedrock 3.17 - 3.26m</li> <li>water bearing fracture 3.29m</li> </ul>	
		End of Borehole	- 113.00					

Drilled By: GET Drilling Ltd. Drill Method: Rotary Air Hammer Hole Size: 5" (127mm) Drill Date: April 3, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



# Well ID: M207!8 D

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### *Easting:* 336138 Northing: 4902190 Field Personnel: B.McC.

	S	SUBSURFACE PROFILE		no	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
ft m -4 - - - - - - - - - - - - - - - - - -			- 117.00-				- Elev. M207-DP 117.71m TOC - TOC s/u 1.35m	
		Ground Surface	116.36 -					
		Overburden, brown, clayey.	- 116.00 - -				- bentonite gravel seal - 0.5m x 32mm Steel screen	
		End of Borehole	- 115.00					
Drill M Hole S	lethod: Size: 1.2	uMetric Environmental Inc. Drill Angle Drive Point Azimuth: 25" (32mm) Datum: N ril 24, 2018 Checked	n.a. AD83				Bu Metri Environmen	C [™]



### Well ID: M208-DP

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 336061 Northing: 4902197 Field Personnel: B.McC.

	S	SUBSURFACE PROFILE		ion	Rock	_		
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
ft m -4 - - - - - - - - - - - - - - - - - -			-				- Elev. M208-DP 117.14m TOC - TOC s/u 1.44m	
		Ground Surface	116.00- - 115.70					
0 - - - - - - - - - - - - - - - - - - -		Overburden, brown, clayey.	115.00-				- bentonite gravel seal	
		End of Borehole uMetric Environmental Inc. Drill Ang Drive Point Azimuth	Jle: Vertical					

Hole Size: 1.25" (32mm) Drill Date: April 24, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M209-DP

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 335840 Northing: 4901958 Field Personnel: B.McC.

SUBSURFACE PROFILE					5 Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
ft m -4 - 			- - 117.00 -				- Elev. M209-DP 117.38m TOC - TOC s/u 1.17m	
		Ground Surface	116.20					
		Overburden, brown, clayey.	116.00 - - - - - - - - - - - - - - - - -				- bentonite gravel seal	
8-		End of Porcholo		V				
		End of Borehole						

Drilled By: BluMetric Environmental Inc. Drill Method: Drive Point Hole Size: 1.25" (32mm) Drill Date: May 4, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M210-DP

Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

### Easting: 336146 Northing: 4902133 Field Personnel: B.McC.

SUBSURFACE PROFILE					Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequency/Run	Comments	K (m/sec)
-ft m -4 - - - - - - - - - - - - - - - - - -		Ground Surface	- 117.00- - 116.34				- Elev. M210-DP 117.93m TOC - TOC s/u 1.59m - bentonite gravel seal	
		Overburden, brown, clayey. End of Borehole						
Drilled Drill M	/lethod:	uMetric Environmental Inc. Drill Ang Drive Point Azimuth 25" (32mm) Datum: L		<u> </u>	<u> </u>	1	Bullotr	тм

Drill Method: Drive Point Hole Size: 1.25" (32mm) Drill Date: July 10, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



### Well ID: M211-DP

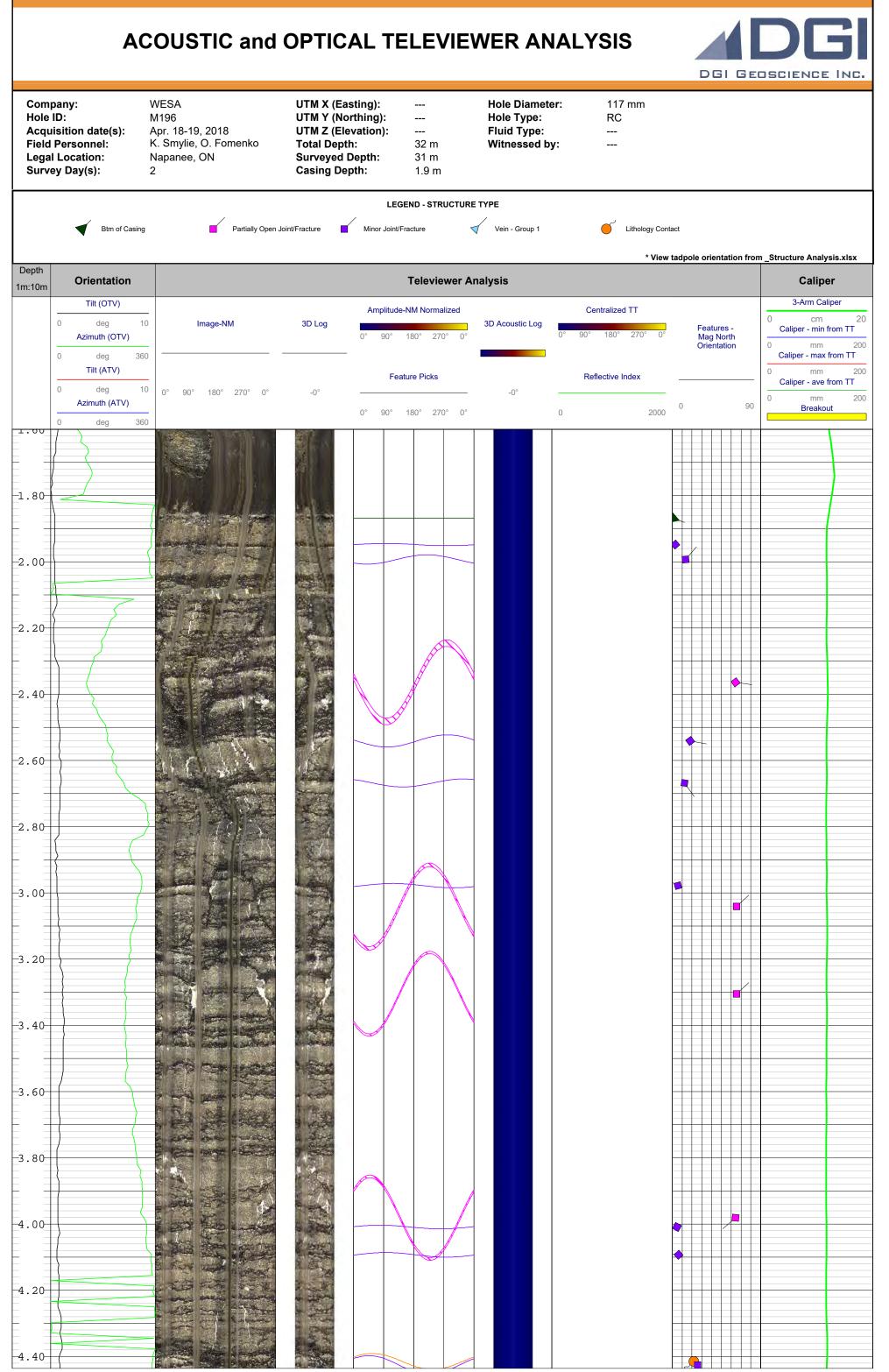
Project: Complementary CAZ Investigation

Client: Waste Management

Location: Richmond Landfill, Napanee, ON

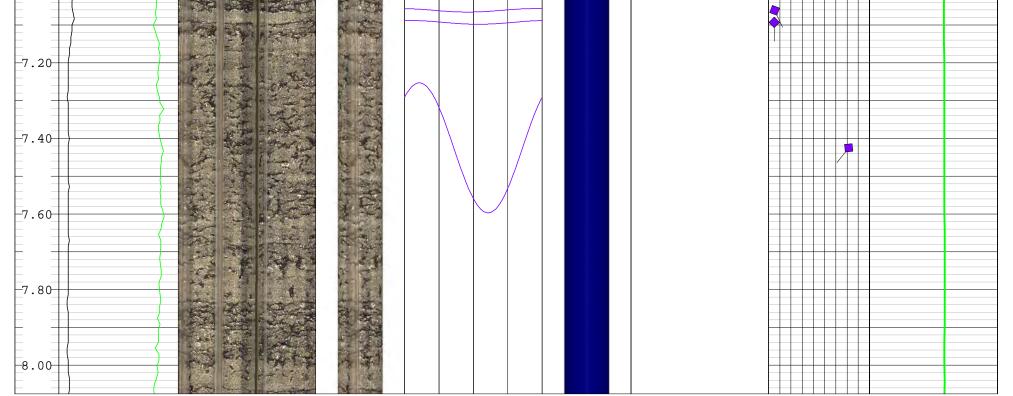
### Easting: 336087 Northing: 4902048 Field Personnel: B.McC.

Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation	Fracture Frequency/Run	Comments	K (m/sec)
		-					
	Ground Surface	- 117.00 — 116.76 -				- Elev. M211-DP 117.86m TOC - TOC s/u 1.10m	
	Overburden, brown, clayey.					- bentonite gravel seal	
	End of Borehole		E				

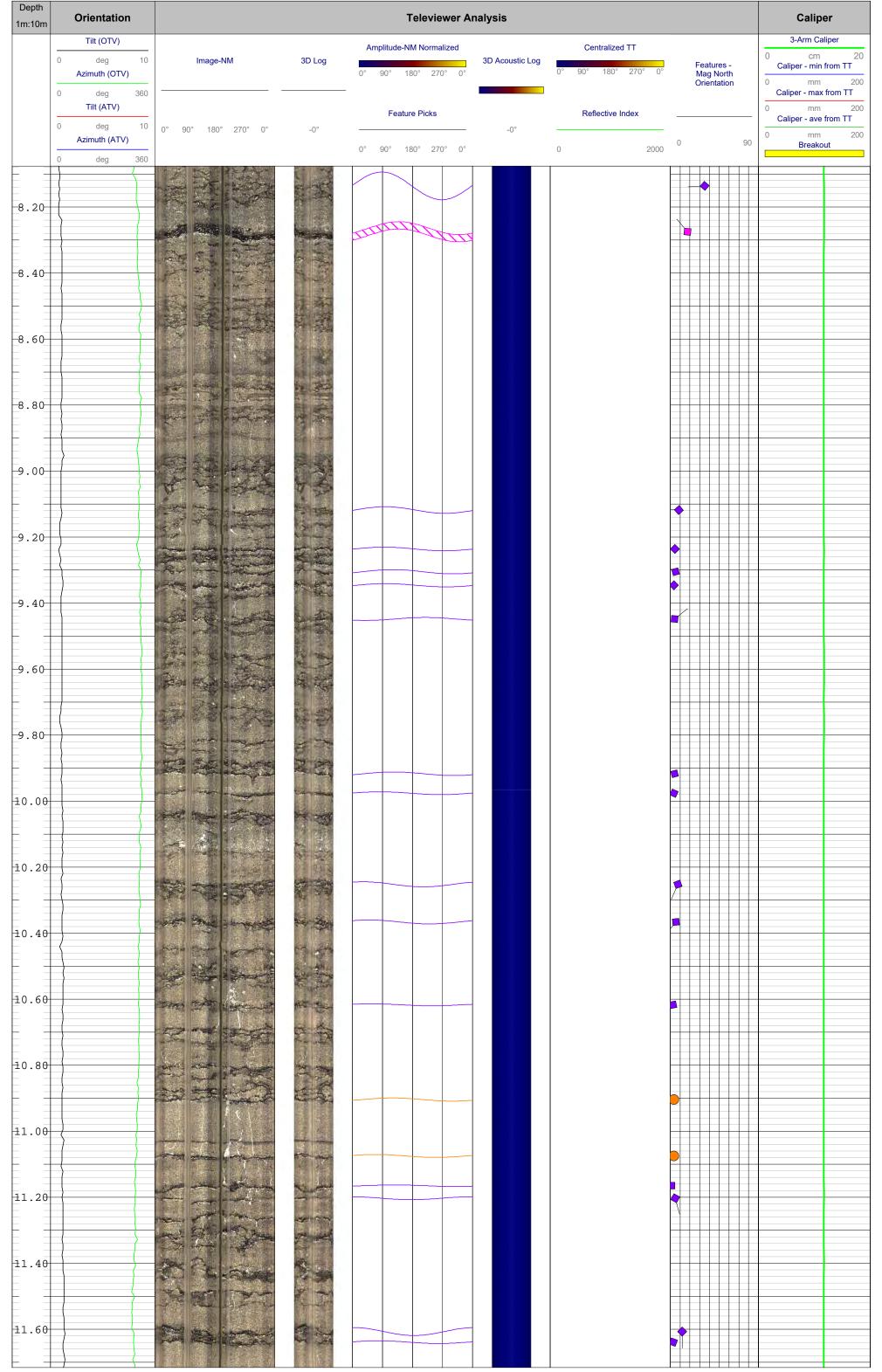

Drill Method: Drive Point Hole Size: 1.25" (32mm) Drill Date: July 10, 2018 Drill Angle: Vertical Azimuth: n.a. Datum: NAD83 Checked By: M.C.



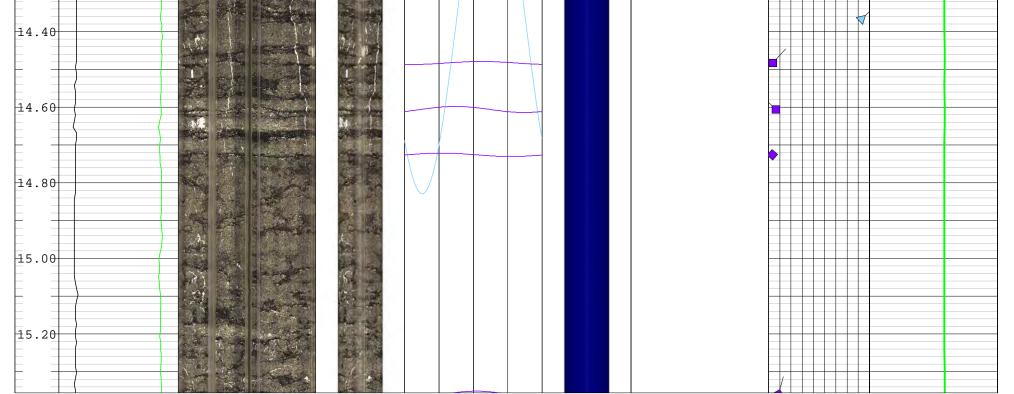
### APPENDIX B

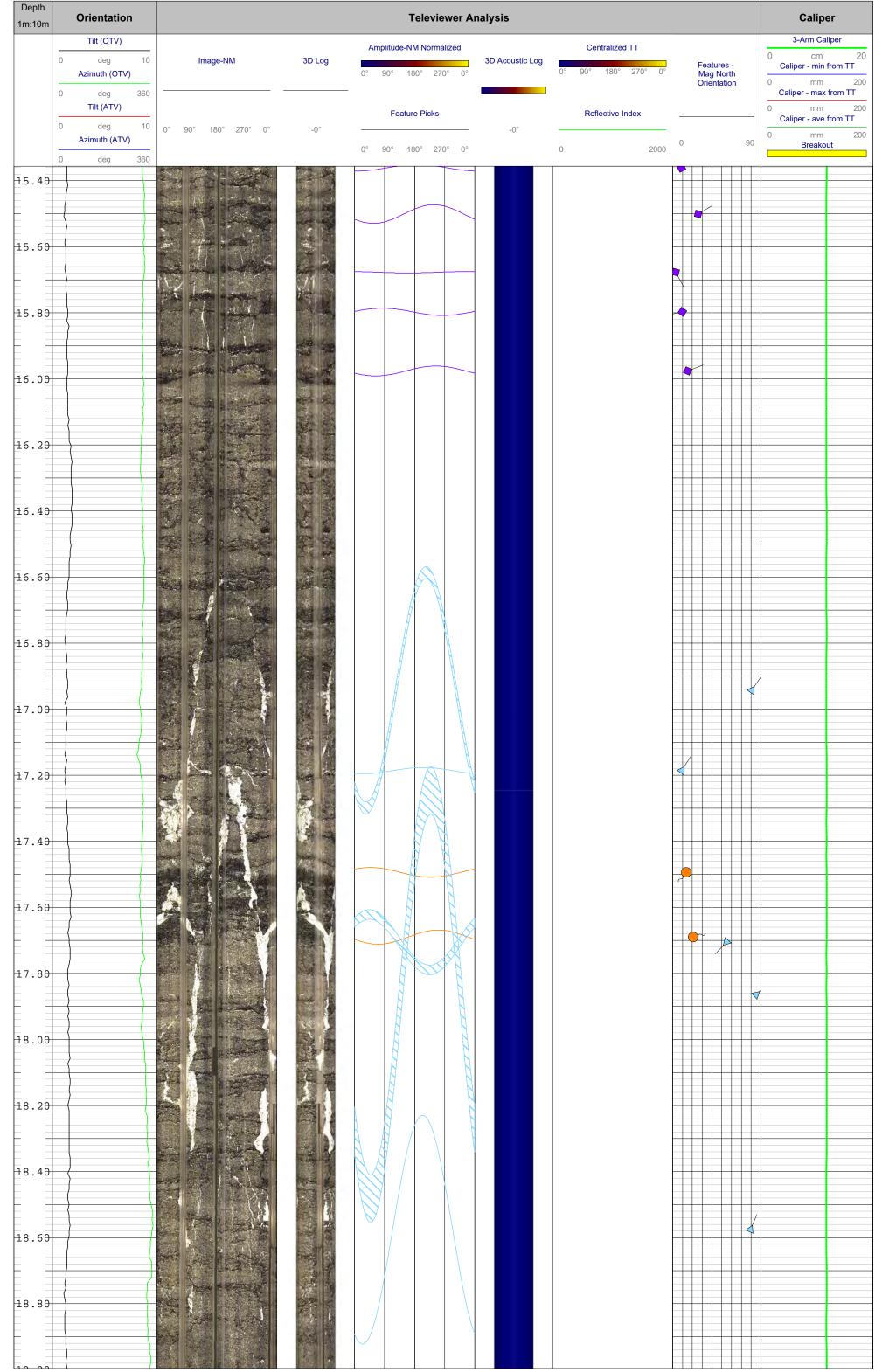

Downhole Geophysical Logs (DGI Geoscience Inc.) (on CD)

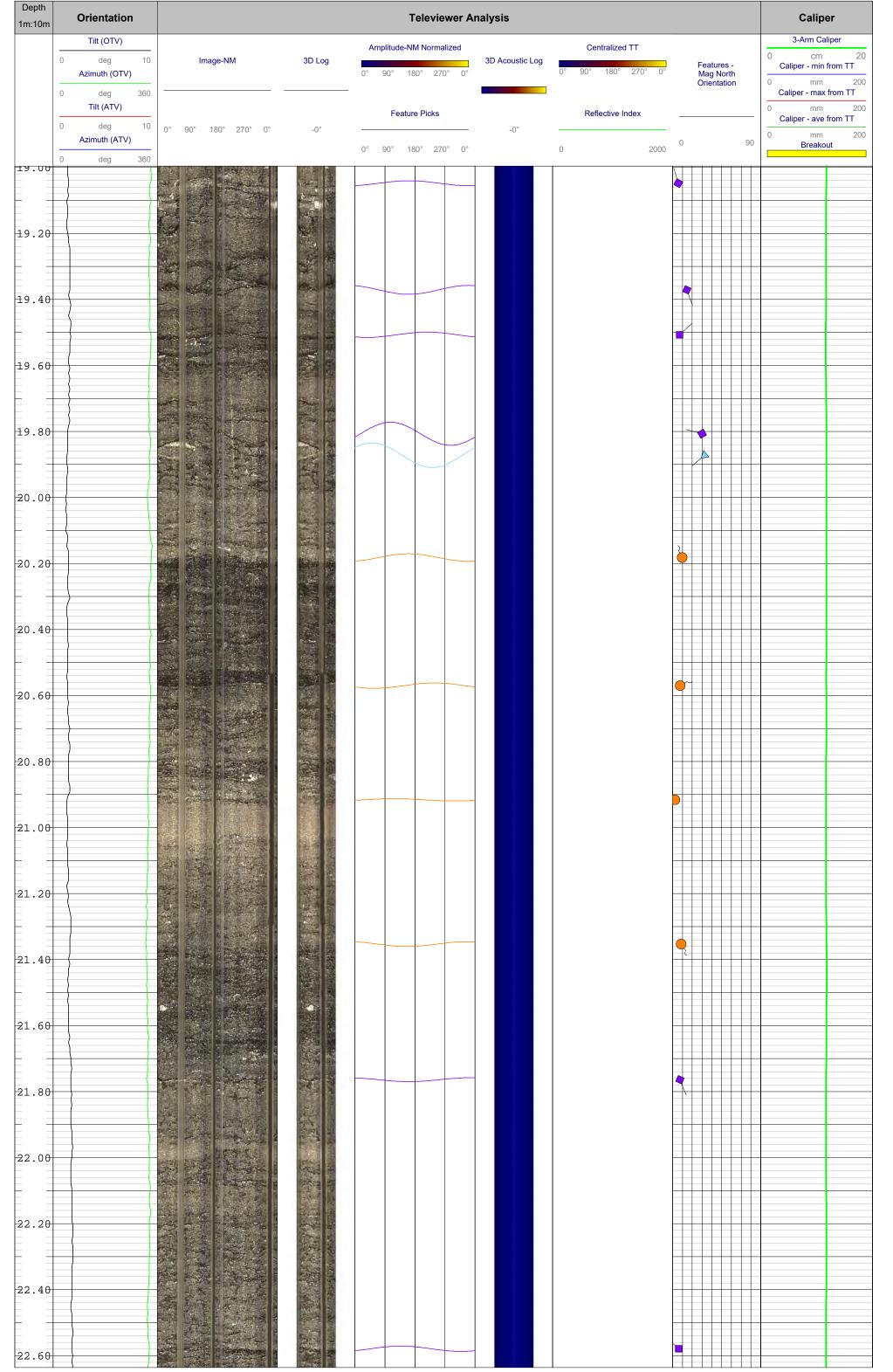




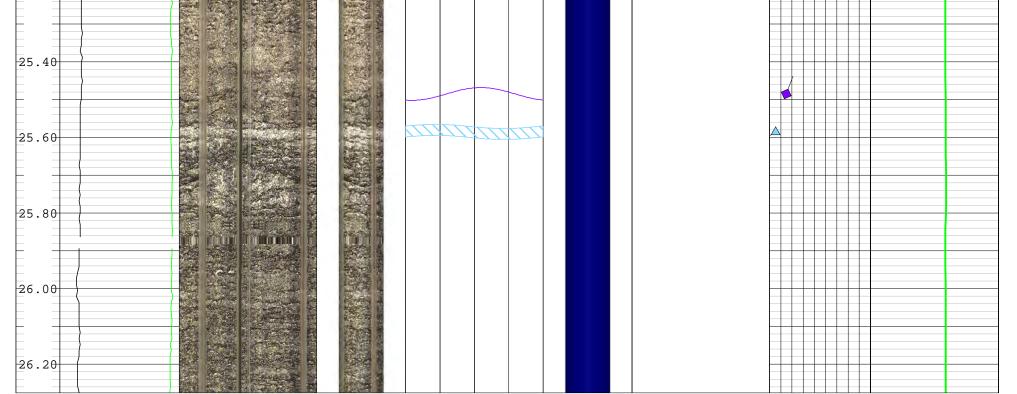

Page 1


Depth 1m:10m	Orientation		Caliper					
	Tilt (OTV)			Centralized TT		3-Arm Caliper		
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT
	0 deg 360			-			Orientation	0 mm 200 Caliper - max from TT
	Tilt (ATV)       0     deg     10			Feature Picks		Reflective Index		0 mm 200 Caliper - ave from TT
	Azimuth (ATV)	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
	0 deg 360							
			D+ III C III					
4.60		Start A						
	}							
4.80								
		the states	8 S					
		and the second						
5.00			in the second					
- 00		and the second						
5.20								
_								
5.40			A STATE					
			K (22)					
			1.00					
5.60								
		THE REPORT	1					
5.80								
	}	1 217 RTZ 12:50	2 3331					
6.00								
6.20								
			and the second					
		E M Det	in the					
6.40								
		100 261 253	14.224					
6.60								
		and the second	1					
6.80								
7.00		the see light	1					
		55 448 182 FC	G-22%					

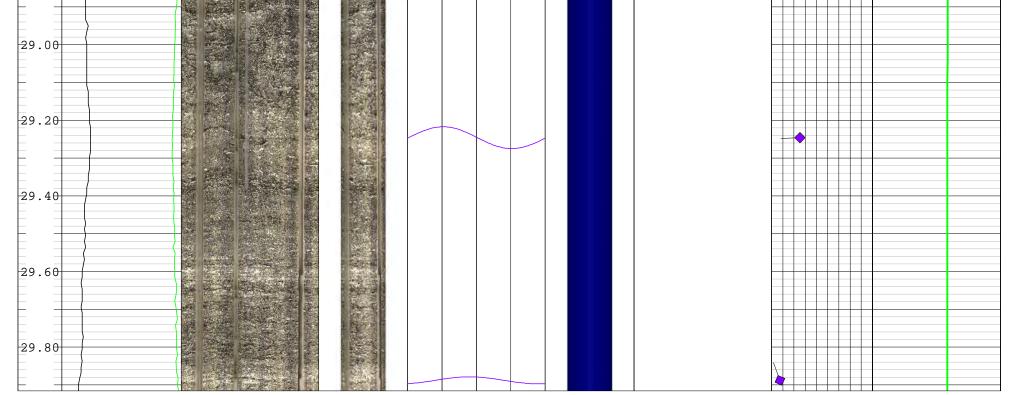




Page 2

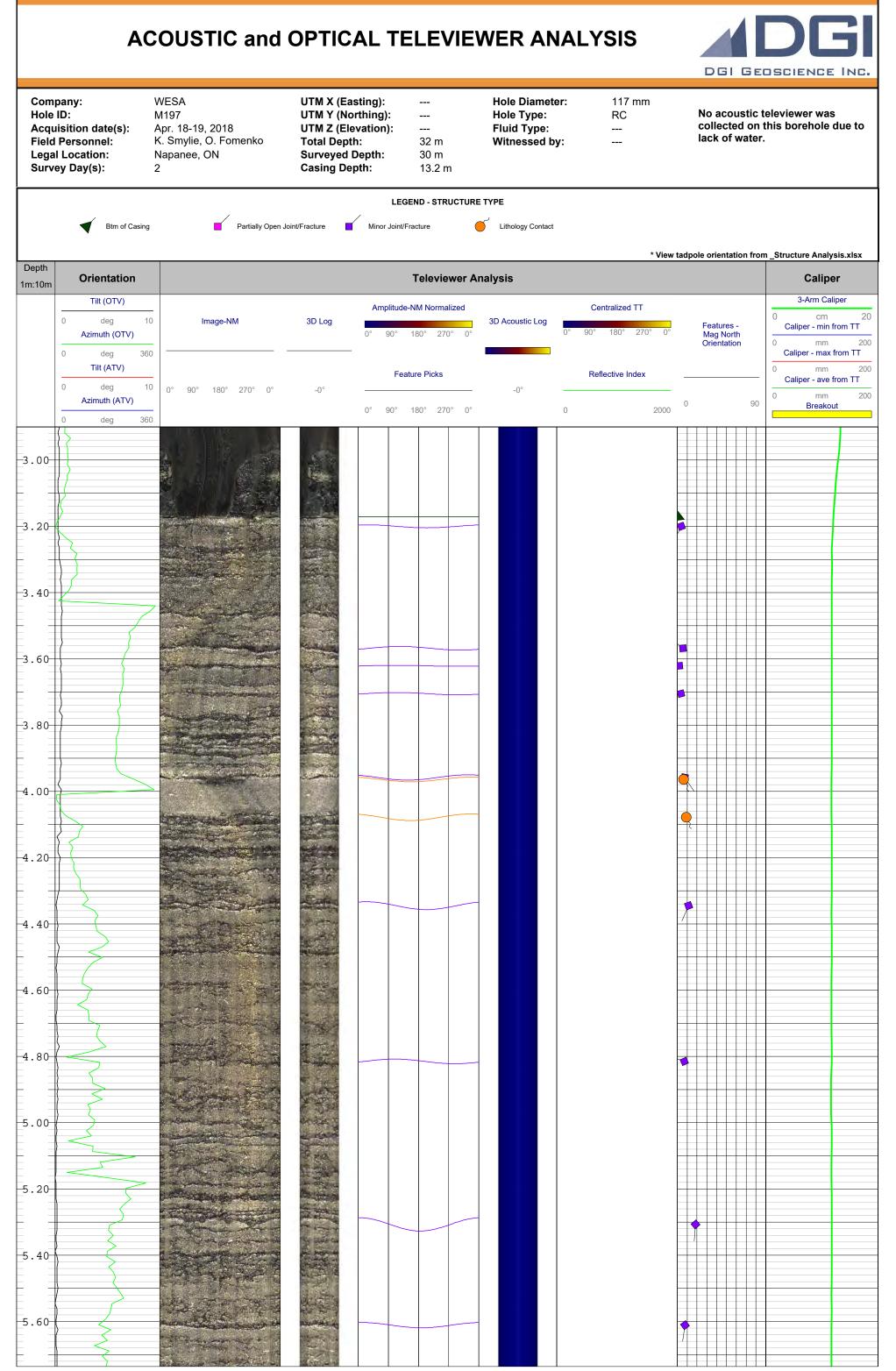



Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	Amplitude-NM Normalized	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT
	0 deg 360 Tilt (ATV)			Feature Picks		Reflective Index	Orientation	0 mm 200 Caliper - max from TT 0 mm 200
	0 deg 10 Azimuth (ATV)	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°		0 90	Caliper - ave from TT 0 mm 200 Breakout
	0 deg 360		A 147 A	0 90 160 270 0		0 2000		
11.80			Care State					
		in Cliffe						
		281003	四步					
12.00		the to rear					♦	
12.20		18 Salara	18					
		the second						
		the was a succión						
12.40								
		资 资 资 资						
12.60								
12.80								
12.00								
13.00								
13.20								
		See Prove a constant	an rea					
13.40			1 · .					
			1					
<del>1</del> 3.60								
		AN IN IMAGE	64 40					
13.80		- my may						
13.00								
		Pres Con a comment						
14.00								
		State in the state						
14.20								
		2 AN SAC						

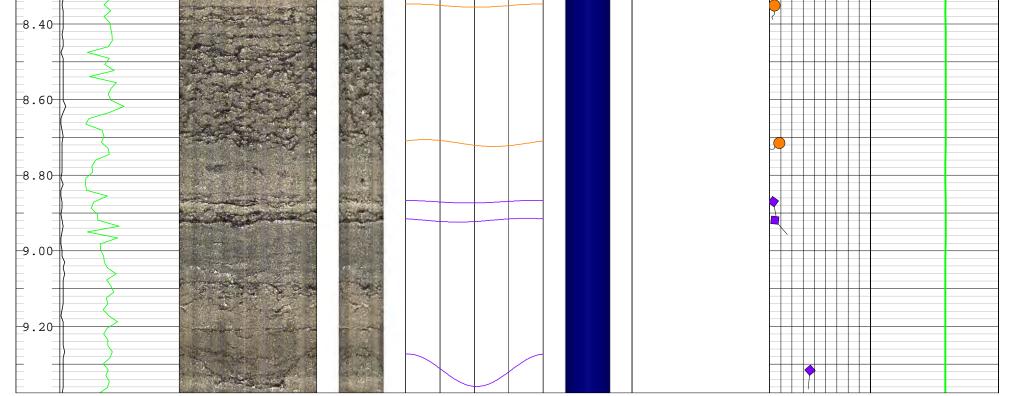




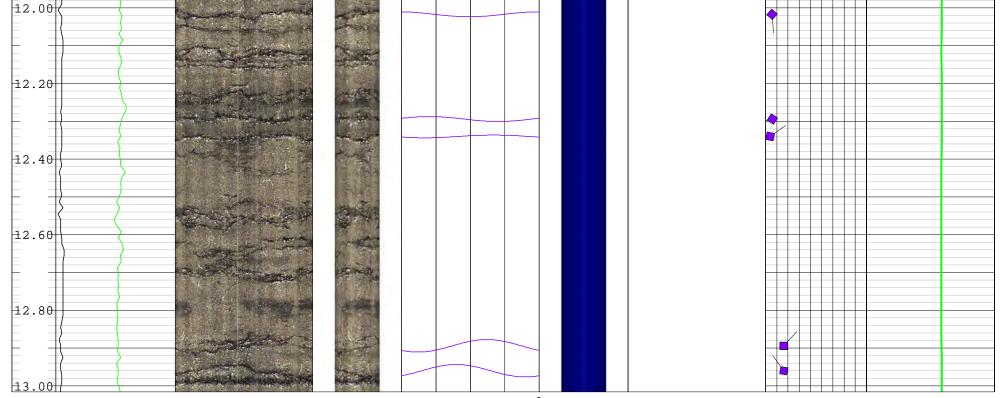




Depth 1m:10m	Orientation			Televiewer A	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT
	0 deg 360 Tilt (ATV)			-			Orientation	0 mm 200 Caliper - max from TT 0 mm 200
	0 deg 10	0° 90° 180° 270° 0°	-0°	Feature Picks	-0°	Reflective Index		Caliper - ave from TT 0 mm 200
	Azimuth (ATV)			0° 90° 180° 270° 0°		0 2000	0 90	Breakout
			1					
22.80								
23.00							2	
		日本 開始						
<del>2</del> 3.20			1 6 2					
		2. 19 19 19						
23.40								
23.60			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -					
		A . A Way Sold	AT					
23.80		Ser Street	2.1					
_			-					
24.00		1 1 2						
24.00								
_							<b>?</b>	
24.20								
24.40								
_			1000					
24.60								
24.80			A STATE					
25.00								
25.20								
23.20								

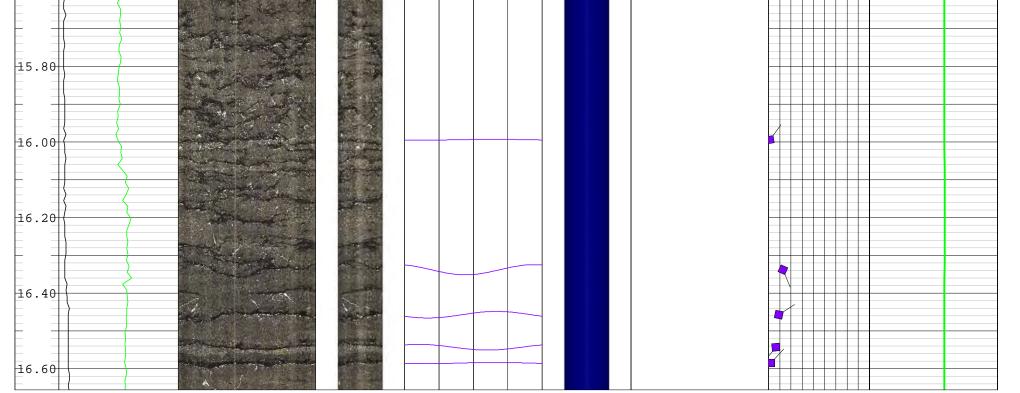



Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10	Image-NM	3D Log		3D Acoustic Log	0° 90° 180° 270° 0°	Features -	0 cm 20 Caliper - min from TT
	Azimuth (OTV)			0° 90° 180° 270° 0°		0 90 100 270 0	Features - Mag North Orientation	0 mm 200 Caliper - max from TT
	Tilt (ATV)			Feature Picks		Reflective Index		0 mm 200
	0 deg 10	0° 90° 180° 270° 0°	-0°		-0°			Caliper - ave from TT
	Azimuth (ATV)			0° 90° 180° 270° 0°		0 2000	0 90	Breakout
26.40		ST 5 3 1 1 1 1 1 1	2					
26.60								
20.00								
26.80								
10.00								
27.00								
			and the second second					
27.20								
27.40								
27.60								
27.80								
28.00								
_			. Standard a					
28.20		and a star of the star of the						
		the state with some we	Prine 1					
			E					
28.40			and the second s					
			and a					
28.60								
			AN INCOME.					
28.80								

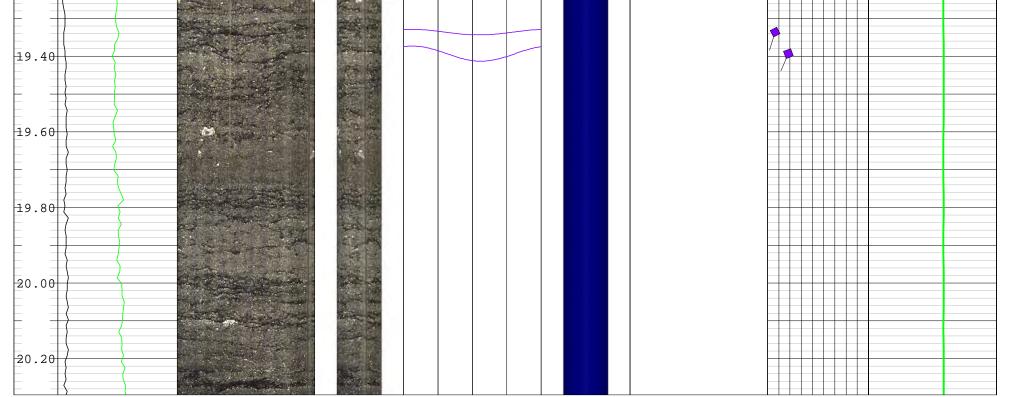


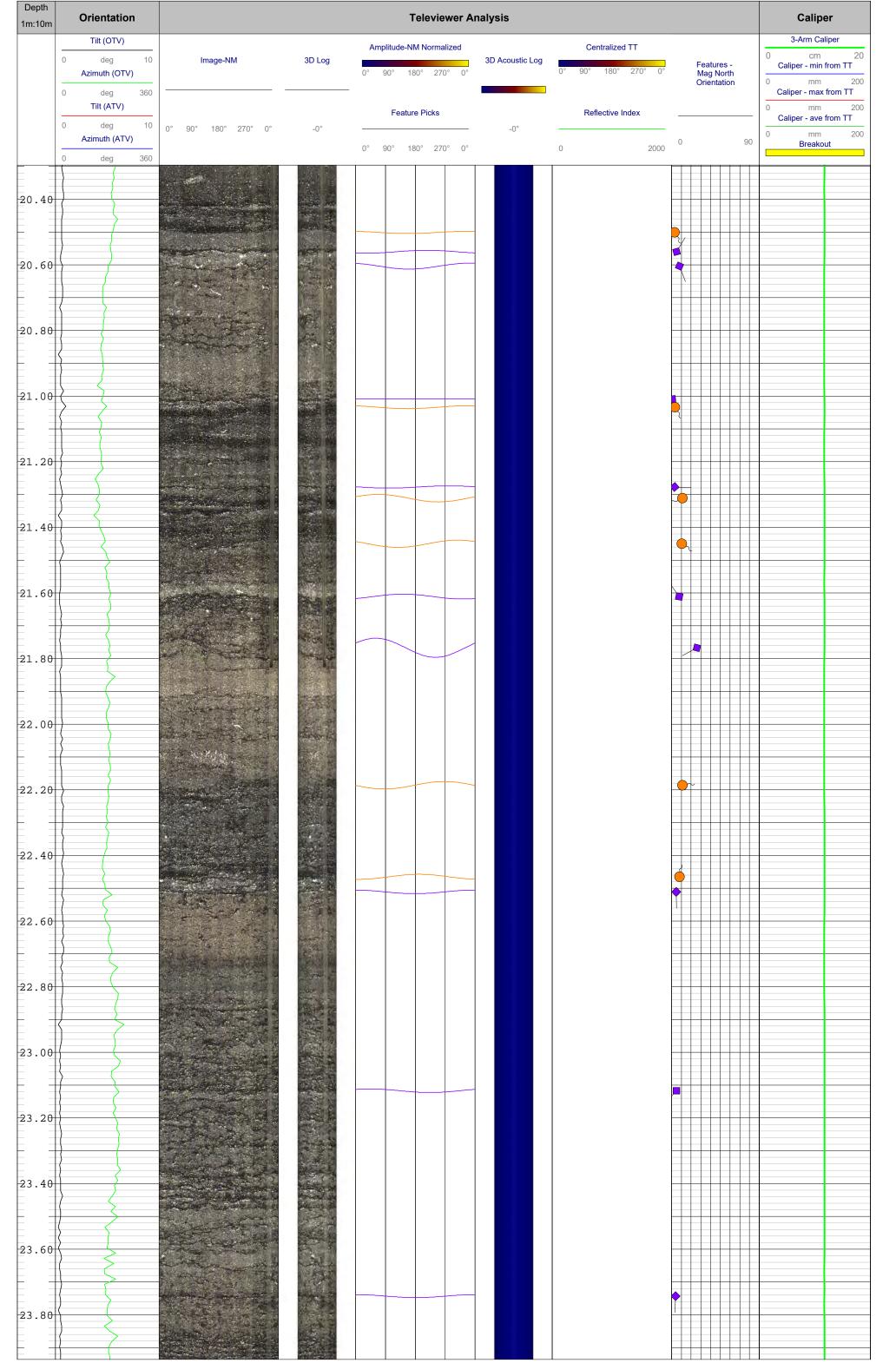

Depth 1m:10m	Orientation				т	elevie	wer Aı	nalysis								Caliper	
	Tilt (OTV)			Am	plitude-NI	M Normal	ized			Centralized TT					1.	3-Arm Calip	
0	deg 10 Azimuth (OTV)	Image-NM	3D Log		90° 18			3D Acoustic Log	0°	90° 180° 270° 0°		Fe Ma	atures ag Noi ientati	s - th	_	0 cm 20 Caliper - min from TT 0 mm 200	
0	deg 360 Tilt (ATV)				Footur	e Picks				Reflective Index		Ori	ientati	on	0	Caliper - max fro	200
0	deg 10 Azimuth (ATV)	0° 90° 180° 270° 0°	-0°					-0°			0			9	0	Caliper - ave fro mm Breakout	200
0	deg 360			0°	90° 18	30° 270	° 0°		0	2000							
30.00 30.20 30.40																	
30.60																	



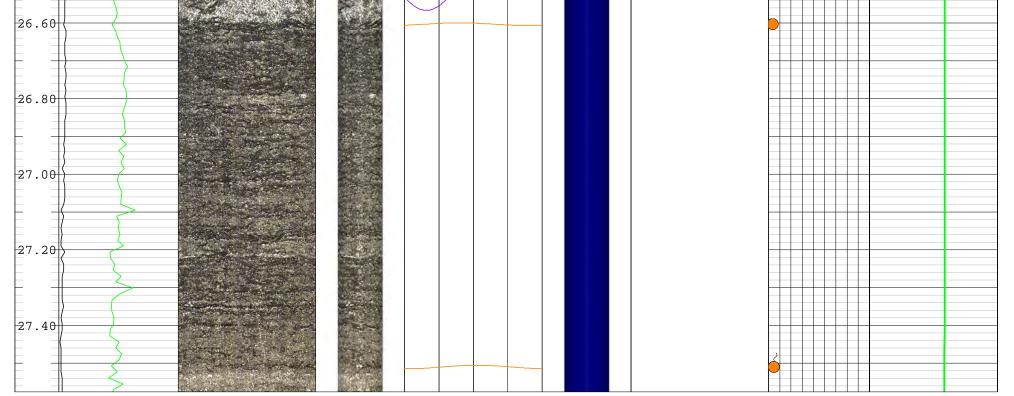

Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV)			- Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 <u>Azimuth (ATV)</u> 0 deg 360	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
5.80								
6.00		and the second						
6.20		ALL DE DE	17-1-A .					
6.40								
6.60								
6.80	5							
-7.00								
		Concernation of the first						
7.20		AND AND AND						
-7.40			1000年の					
		a second						
7.60		WELLS .						
-7.80								
8.00								
8.20		Personal Providence						



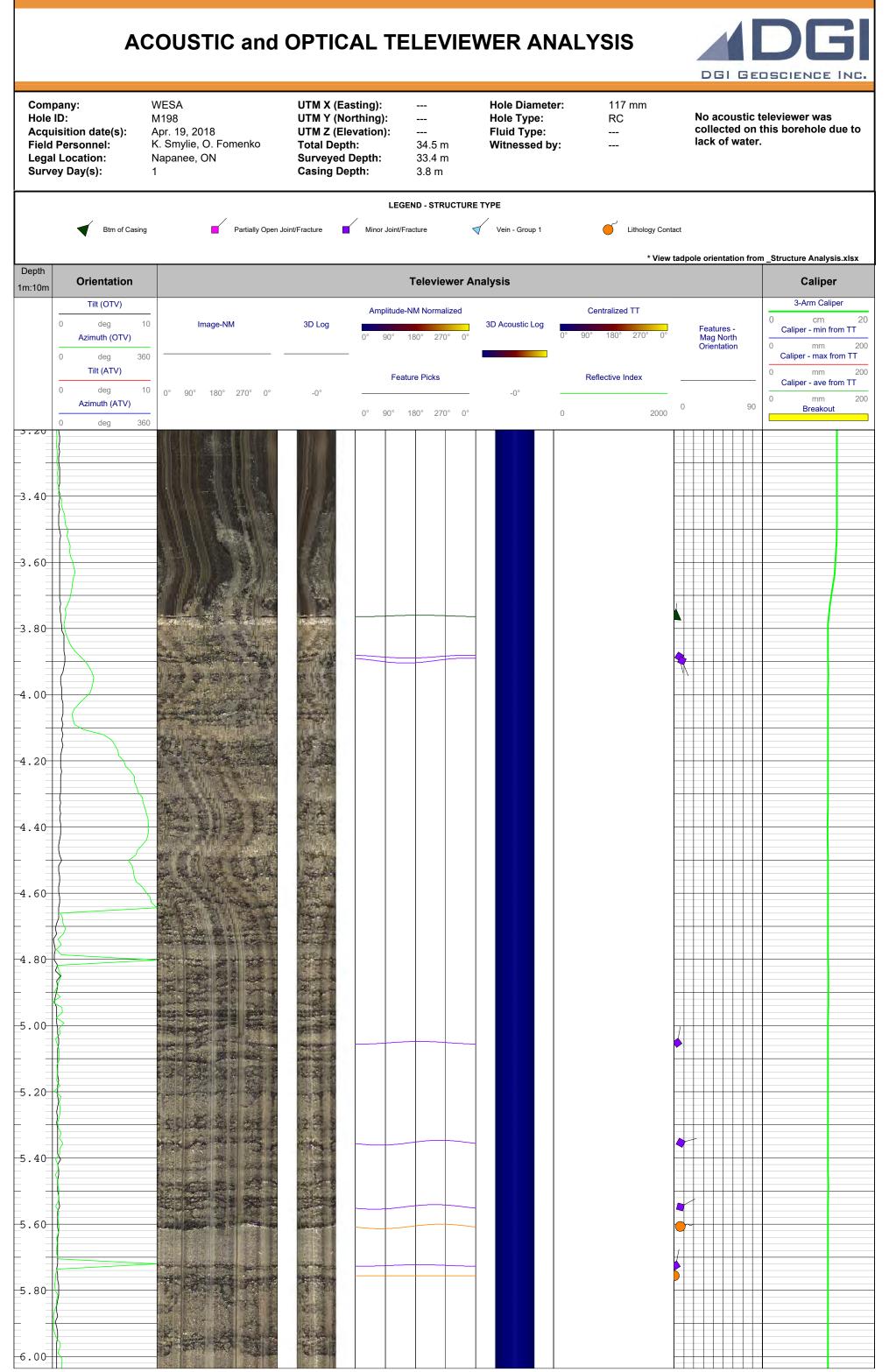

Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV)			- Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 Azimuth (ATV)	0° 90° 180° 270° 0°	-0°	 0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
9.40	0 deg 360							
9.60-								
9.00								
9.80								
10.00	<u> </u>							
			and the second s					
			a second					
10.20								
10.40		- Andrews						
			におり					
10.6 <del>0</del>		and the second of	yeare?					
10.00		HAN TON						
		C Company						
10.80			in the second					
		A SAMAGE	the states					
<del>1</del> 1.00		And the second	ALCON N					
		- A A A A A A A A A A A A A A A A A A A					- <b>•</b>	
		the man and the second	and a					
11.20		A TOMOTO	-					
<del>1</del> 1.40	$\left\{ \begin{array}{c} \\ \end{array} \right\}$							
<del>1</del> 1.60								
	{		and the second s					
			and a					
<del>1</del> 1.80								
		- Aller						
12.00			L. St.					



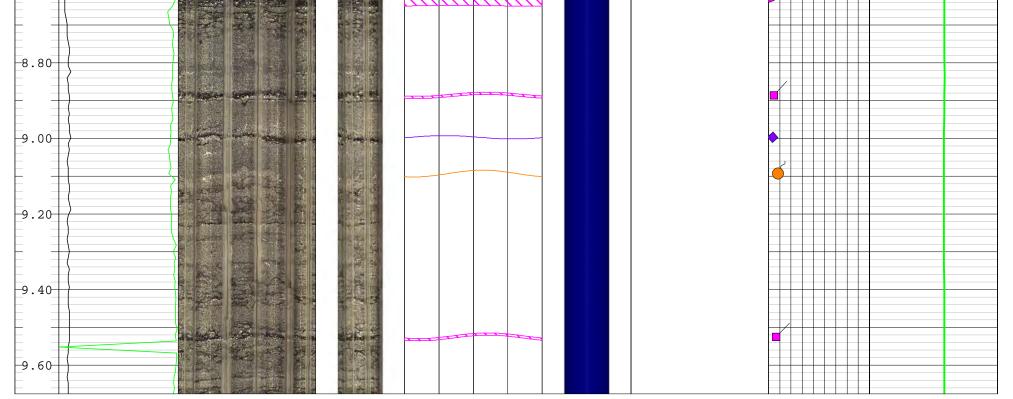

Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV) 0 deg 10			Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	Azimuth (ATV)	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
			a ser					
13.20								
13.40								
13.60								
13.80								
14.00								
14.20								
14.40		the second						
14.60								
14.80								
15.00								
15.20								
15.40								
15.60								



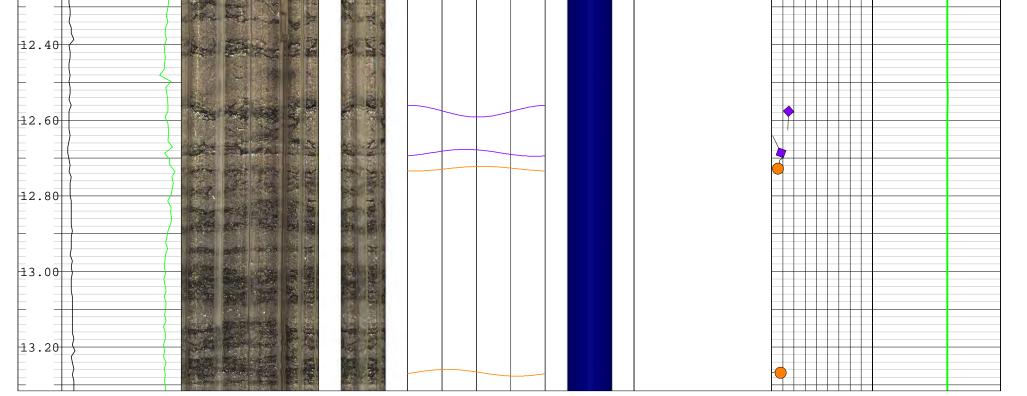

Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV) 0 deg 10			Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 <u>Azimuth (ATV)</u> 0 deg 360	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
			and the					
16.80		and the second						
17.00								
<del>1</del> 7.20								
17.40								
17.60								
17.80								
		AL BOMAN						
18.00		Care and a						
18.20								
18.40								
18.60								
18.80								
19.00			E AZ					
19.20								
		and a second						



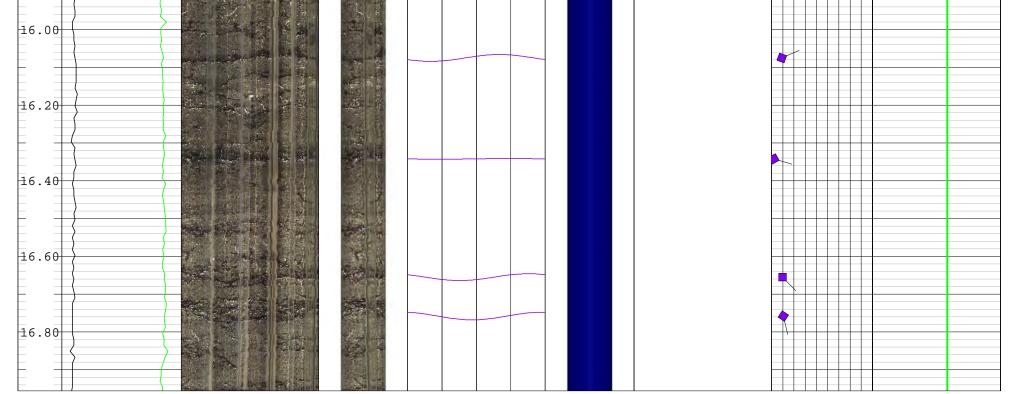




Depth 1m:10m	Orientation			Televiewer An	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV)			Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 Azimuth (ATV)	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
24.00	0 deg 360							
							<b>,</b>	
24.20								
24.40								
24.60		No Alton	10. A.C.					
24.80			al					
25.00								
		ALC: NO						
25.20								
		And And And						
25.40								
25.60								
25.80								
26.00								
26.20								
26.40								
			1					

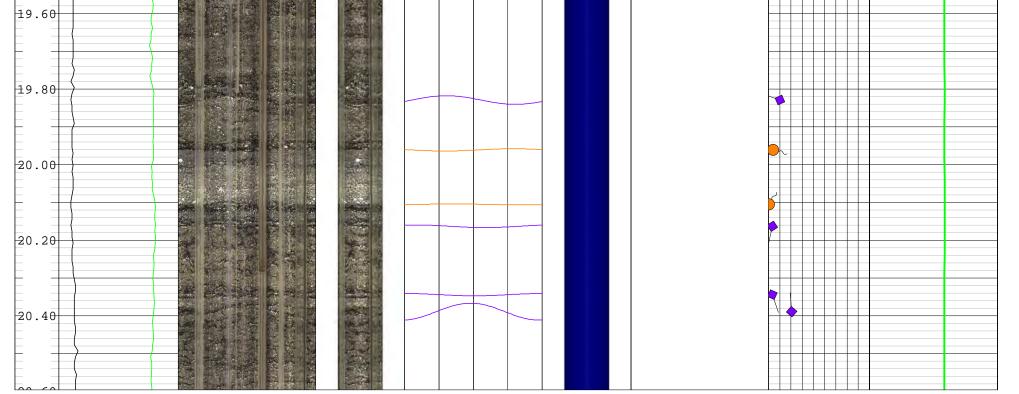


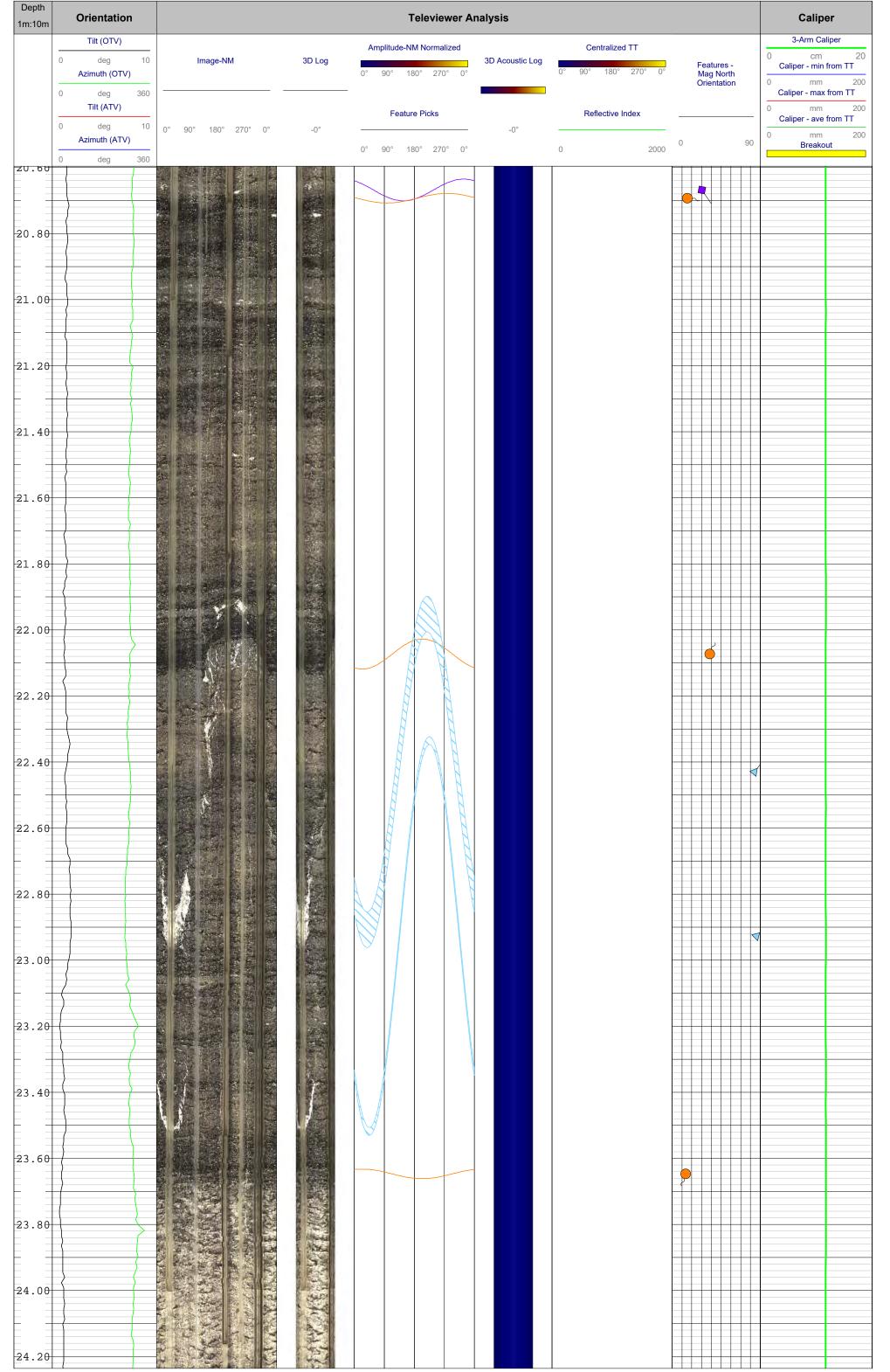

Depth 1m:10m	Orientation			Televiewer	Analysis			Caliper
_	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
0	deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT
0	-			-			Orientation	0 mm 200 Caliper - max from TT
0	Tilt (ATV)			Feature Picks		Reflective Index		0 mm 200 Caliper - ave from TT
0	deg 10 Azimuth (ATV)	0° 90° 180° 270° 0°	-0°		-0°	0 2000	0 90	0 mm 200 Breakout
0	deg 360		LTHAR P.	0 90 180 270 0		2000		
27.60			A. S. A.					
27.80								
		a state of the sta						
28.00					_			
	$\langle \rangle$							
28.20	~~~~							
28.40								
	$\leq$							
28.60								
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
28.80								
20.00			Sumo to 12		-			
		and the state	and the second					
29.00		and the second s	-					
			the second					
	$\leq$	And the second second			-			
29.20								
	$\leq$		Canal State					
29.40								
		A CALL STREET						
	5							
29.60								
29.80	(							
	$\rightarrow$							
	$\sim$							
30.00								
	$\rightarrow$							
30.20								



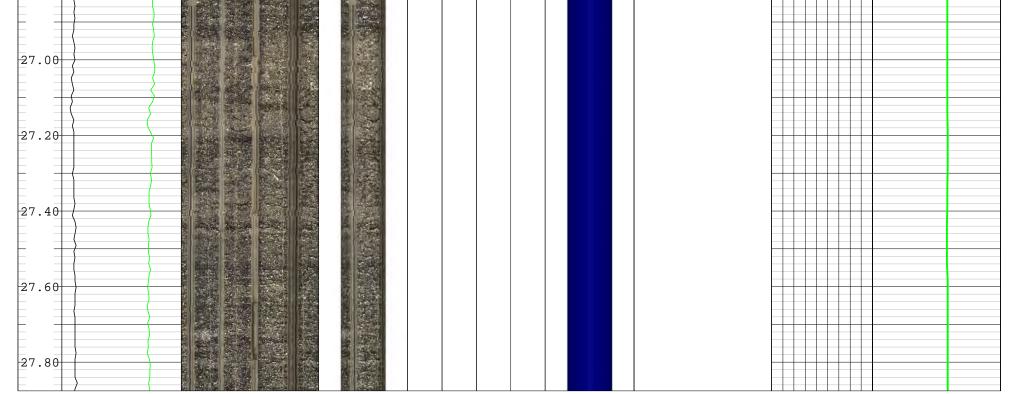

Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV)			Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 <u>Azimuth (ATV)</u> 0 deg 360	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
6.20								
6.40								
6.60	X							
6.80			State of the state					
-7.00	$\langle \rangle$							
-7.20								
			artinui Stough					
-7.40								
-7.60			1					
-7.80								
			ALC: NO					
8.00			ALC: NO					
			AN A					
8.20			IAL					
			A with a					
8.40			1 1 1 1 1 1 1					
8.60	}							



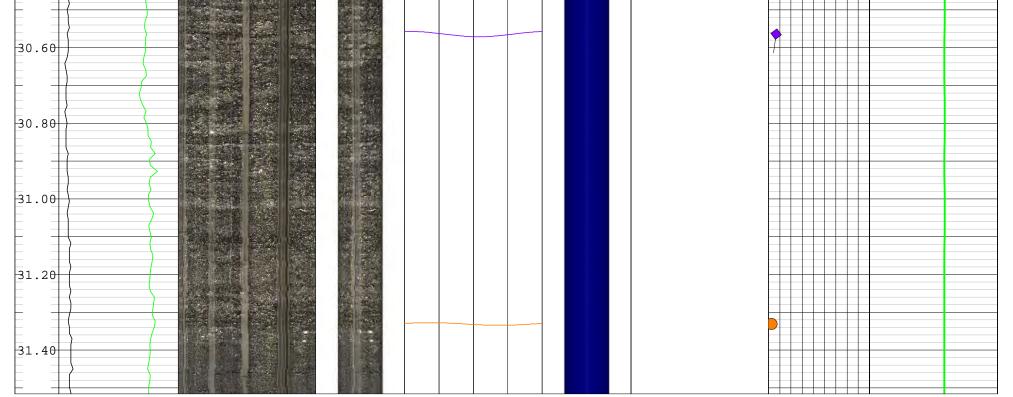

Depth m:10m	Orientation			Televiewer A	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT
	0 deg 360			-			Orientation	0 mm 200 Caliper - max from TT
	Tilt (ATV)			Feature Picks		Reflective Index		0 mm 200 Caliper - ave from TT
	0 deg 10 Azimuth (ATV)	0° 90° 180° 270° 0°	-0°		-0°		0 90	0 mm 200 Breakout
	0 deg 360			0° 90° 180° 270° 0°		0 2000		
9.80	}							
			如在了					
0.00								
		( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )						
0.20		「存着法に	1					
0.40								
0.10								
0.60			2					
			2					
			No. of the second se					
0.80		and the root of the						
1.00								
		The state of the second					~	
1.20			A STATE					
		IS GOT						
1.40		and the second s	S.C.					
		- Fring to 1	A					
1.60								
1.00		T.S.A.I						
_								
1.80								
		人が多い	No. 10					
2.00								
		No month	1					
	{							
2.20								
		A LONG KE						




Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	' 0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV)			Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 Azimuth (ATV) 0 deg 360	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
13.40								
13.60								
13.80		<b>Sarr</b> a						
14.00								
4.20		THE REAL PROPERTY IN						
-								
4.40								
L4.60								
14.80								
15.0 <del>0</del>								
£5.2θ								
			2.184					
5.40								
			A. I. A.					
5.60								
15.80								




Depth 1m:10m	Orientation			Televiewer A	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV)			- Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 Azimuth (ATV) 0 deg 360	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
7.00								
7.20								
			and the second s					
7.40								
7.60								
7.80								
8.00								
8.20								
		>份[[] +]						
8.40								
8.60								
8.80								
9.00			-					
9.20								
9.40								





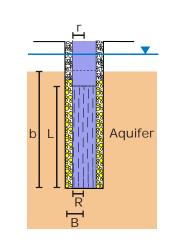

Depth 1m:10m	Orientation			Televiewer An	alysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 Caliper - min from TT 0 mm 200
	0 deg 360 Tilt (ATV)			- Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 Azimuth (ATV)	0° 90° 180° 270° 0°	-0°		-0°	0 2000	0 90	0 mm 200 Breakout
	0 deg 360							
24.40								
24.60								
24.80								
25.00								
25.20								
25.40								
25.60								
25.80								
26.00								
26.20								
26.40								
26.60								
26.80								



Depth 1m:10m	Orientation			Televiewer Ar	nalysis			Caliper
	Tilt (OTV)			Amplitude-NM Normalized		Centralized TT		3-Arm Caliper
	0 deg 10 Azimuth (OTV)	Image-NM	3D Log	' 0° 90° 180° 270° 0°	3D Acoustic Log	0° 90° 180° 270° 0°	Features - Mag North Orientation	0 cm 20 <u>Caliper - min from TT</u> 0 mm 200
	0 deg 360 Tilt (ATV)			Feature Picks		Reflective Index		Caliper - max from TT 0 mm 200 Caliper - ave from TT
	0 deg 10 Azimuth (ATV)	0° 90° 180° 270° 0°	-0°	0° 90° 180° 270° 0°	-0°	0 2000	0 90	0 mm 200 Breakout
	0 deg 360							
28.00								
28.20								
28.40								
28.60								
		國務會會						
28.80								
29.00								
29.20								
29.20								
29.40								
<del>2</del> 9.60		() 時間 と   タ						
29.80								
30.00								
30.20								
			R. S.					
30.40								



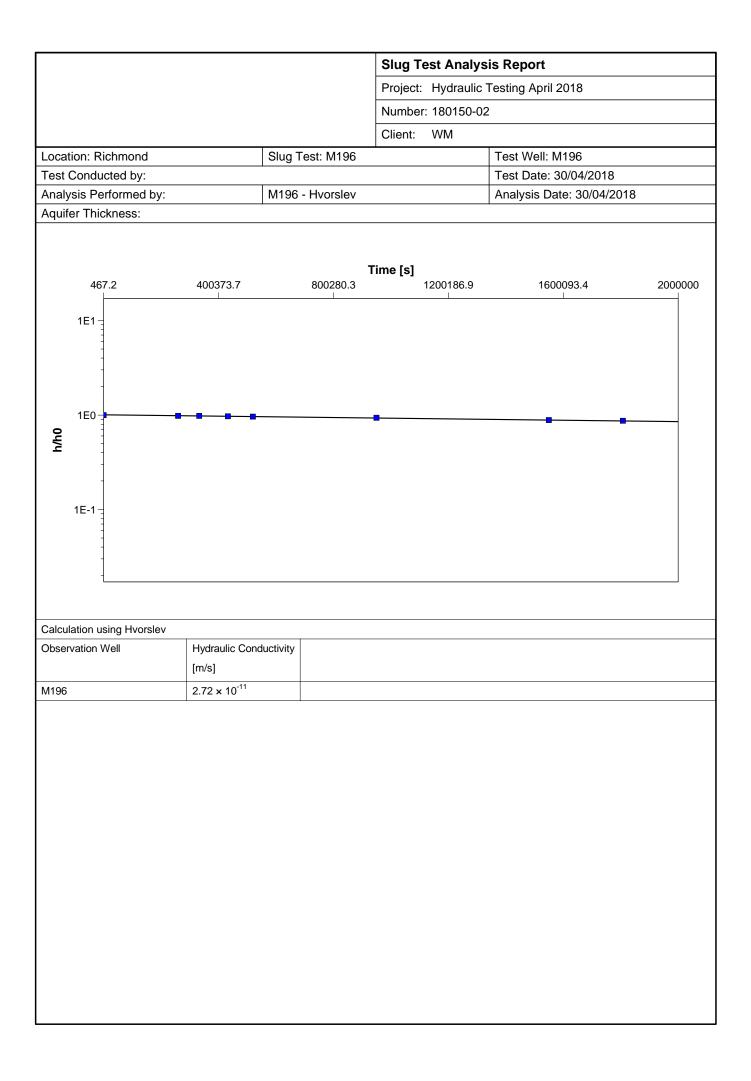
Depth 1m:10m	Orientation				Tel	eviewer A	nalysis							Caliper	
	Tilt (OTV)           0         deg         10           Azimuth (OTV)         10         10	Image-NM	3D Log			lormalized	3D Acoustic Log	0° (	<b>Centralized TT</b>		Featu	ires - North itation		3-Arm Calip 0 cm Caliper - min fro	20 om TT
	0 deg 360 Tiit (ATV)	· · ·			Feature P				Reflective Index		Orier	itation		0 mm Caliper - max fro 0 mm Caliper - ave fro	200
	0 deg 10 Azimuth (ATV) 0 deg 360	0° 90° 180° 270° 0°	-0°	0° 90	)° 180°	270° 0°	-0°	0	2000	0			90	0 mm Breakout	200
31.60															
31.80															
32.00															
32.20		adin 6													
32.40															
32.60															
32.80															
33.00															
33.20															
22 40										<b>P</b>					

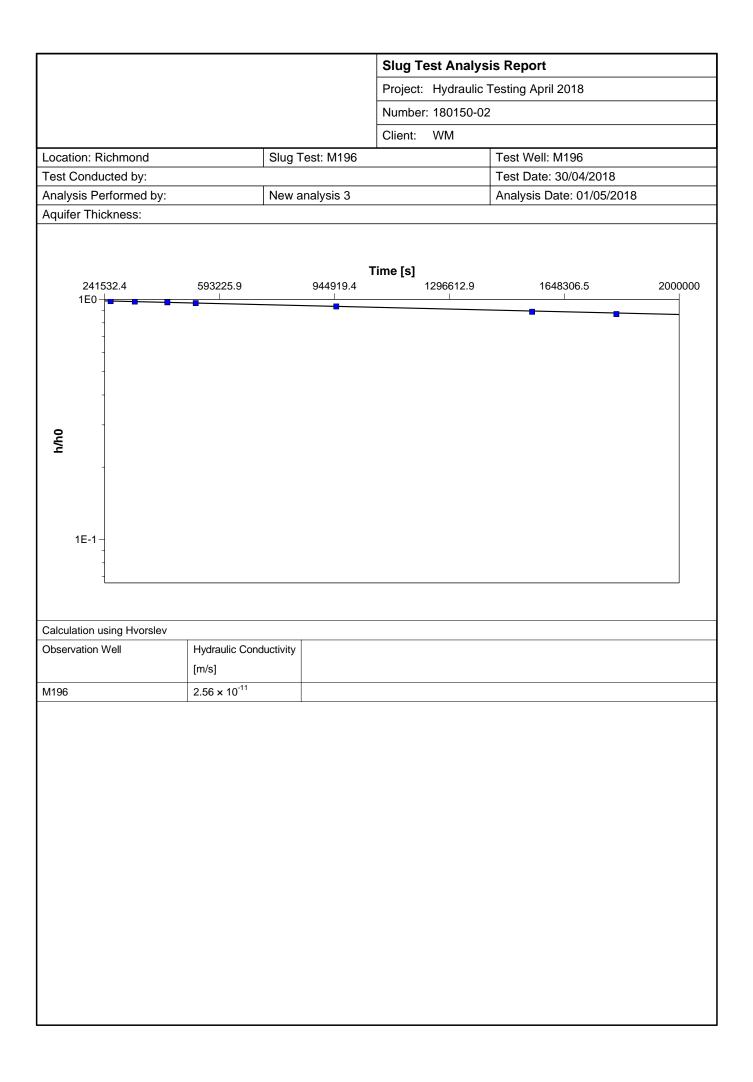

## APPENDIX C

Hydraulic Test Results



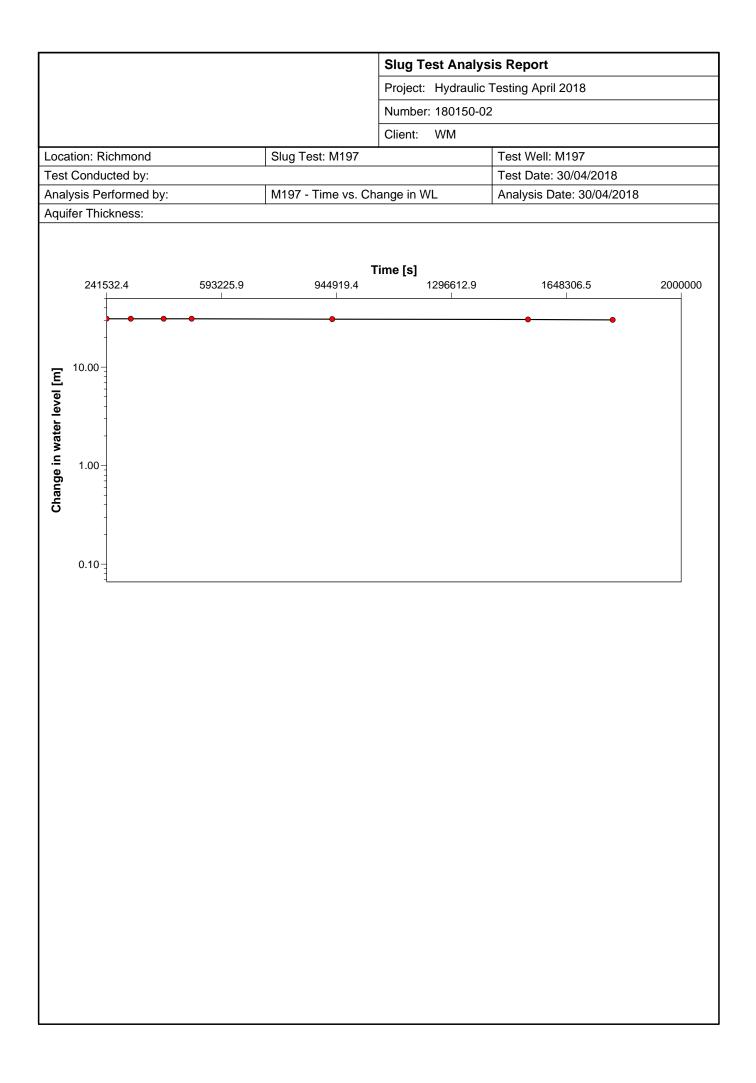
Wells	
Project: Hydraulic Testing April 2018	
Number: 180150-02	
Client: WM	

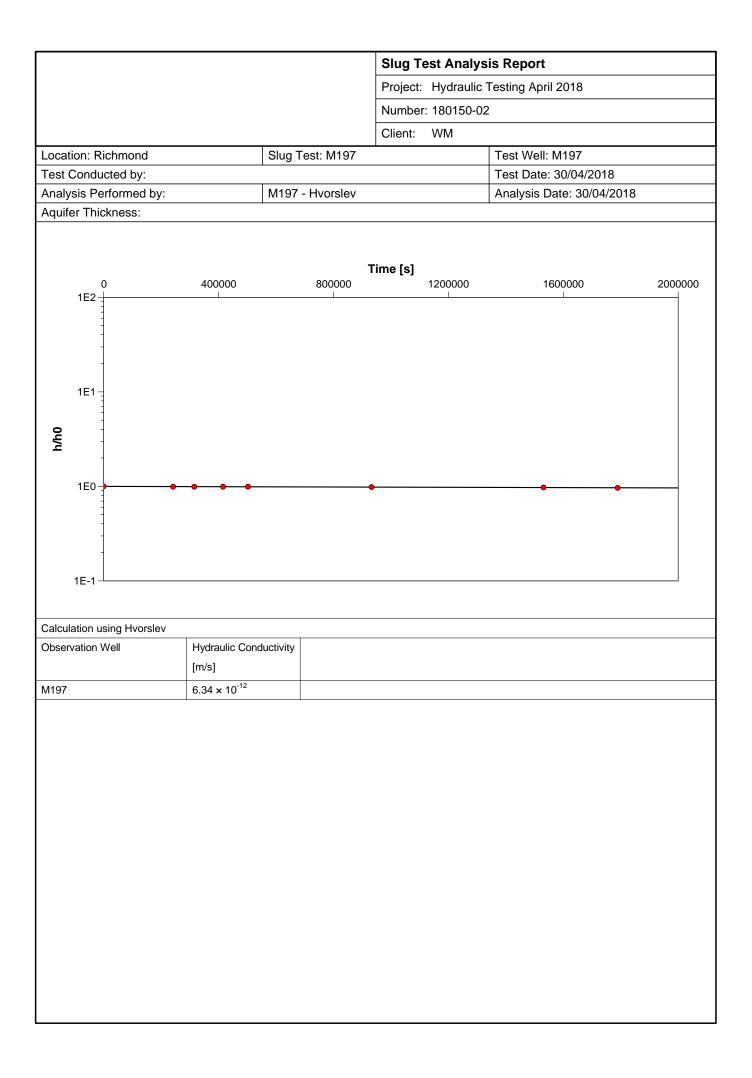

## Location: Richmond




				<b>-</b> , ,, ,				
	Name	X [m]	Y [m]	Elevation (ams	l) <b>E[en]</b> chmark [m]	Penetration	L [m]	B [m]
1	M196					Fully	30	0.057
2	M197					Fully	30	0.057
3	M198					Fully	30	0.057

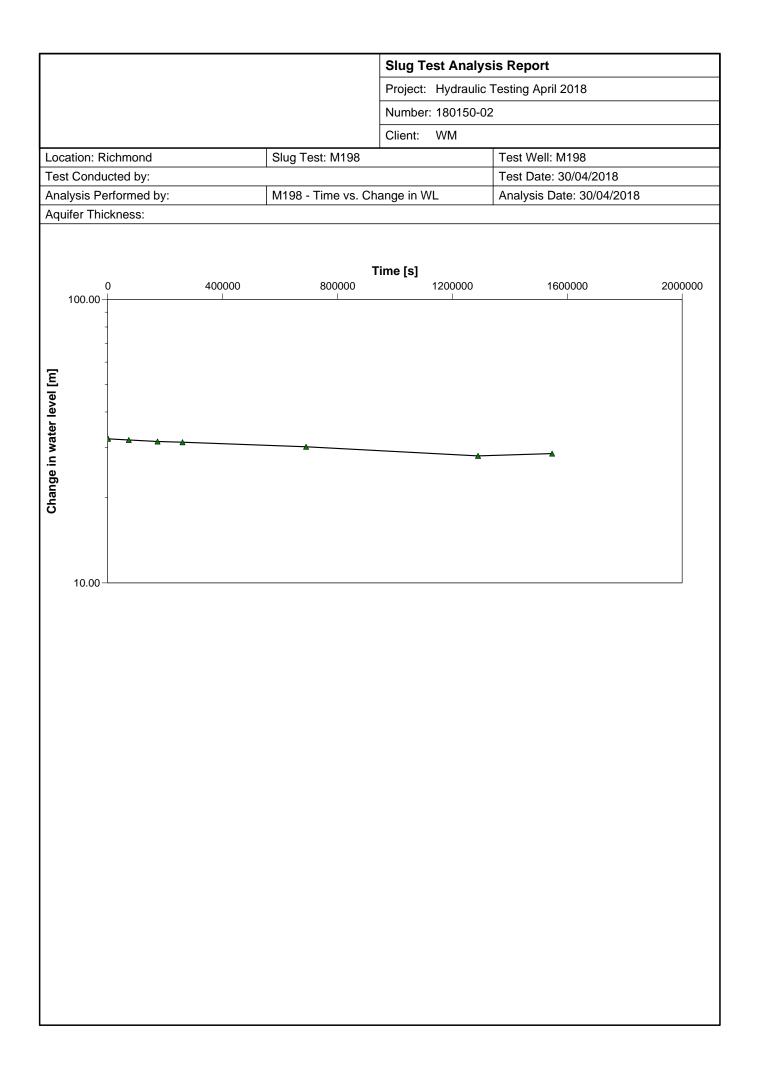
					Slug ⁻	Test - Water	^r Level Data	Page 1 of 1		
					Project: Hydraulic Testing April 2018					
					Number: 180150-02					
					Client:	WM				
Locatio	on: Richmond		Slug T	est: M196	1		Test Well: M196			
Test C	Test Conducted by:			Test Date: 30/04/2018						
Water	Water level at t=0 [m]: 33.35			Static Water Level [m]: 3.00			Water level change at te	=0 [m]: 30.35		
	Time [s]	Water Le	vel	WL Chan [m]	ge					
1	0	33.35		30.35						
2	260100	32.82		29.82						
3	333900	32.68		29.68						
4	433800	32.46		29.46						
5	520200	32.28		29.28						
6	950400	31.31		28.31						
7	1549800	29.94		26.94						
8	1808100	29.38		26.38						

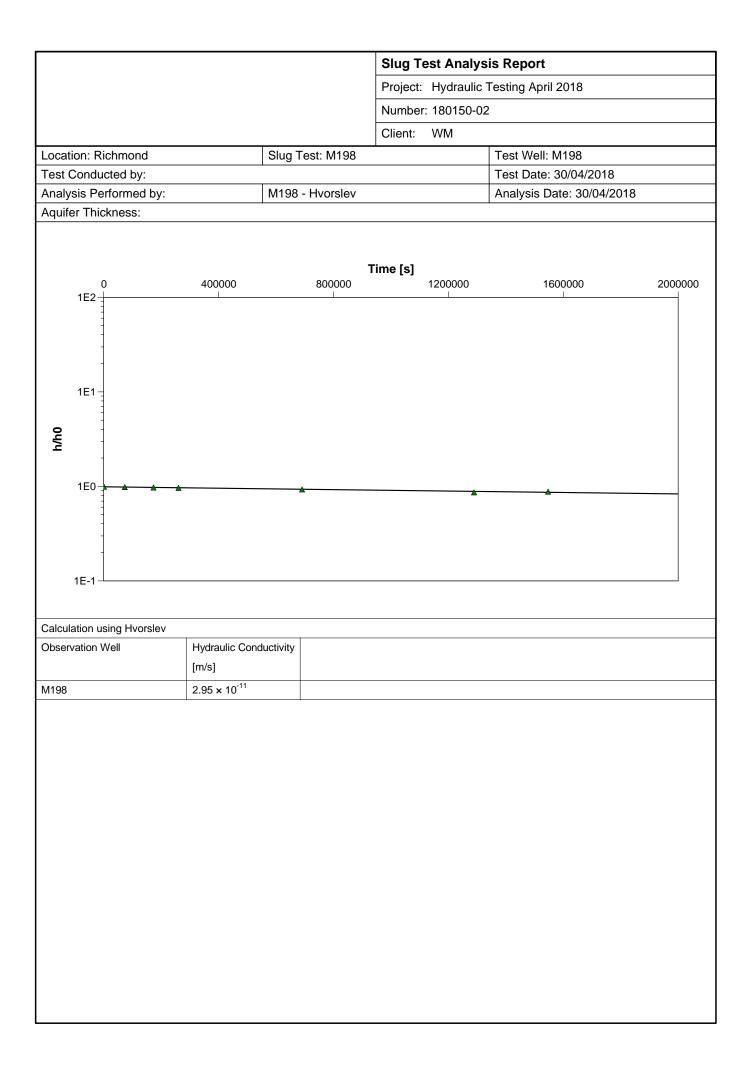




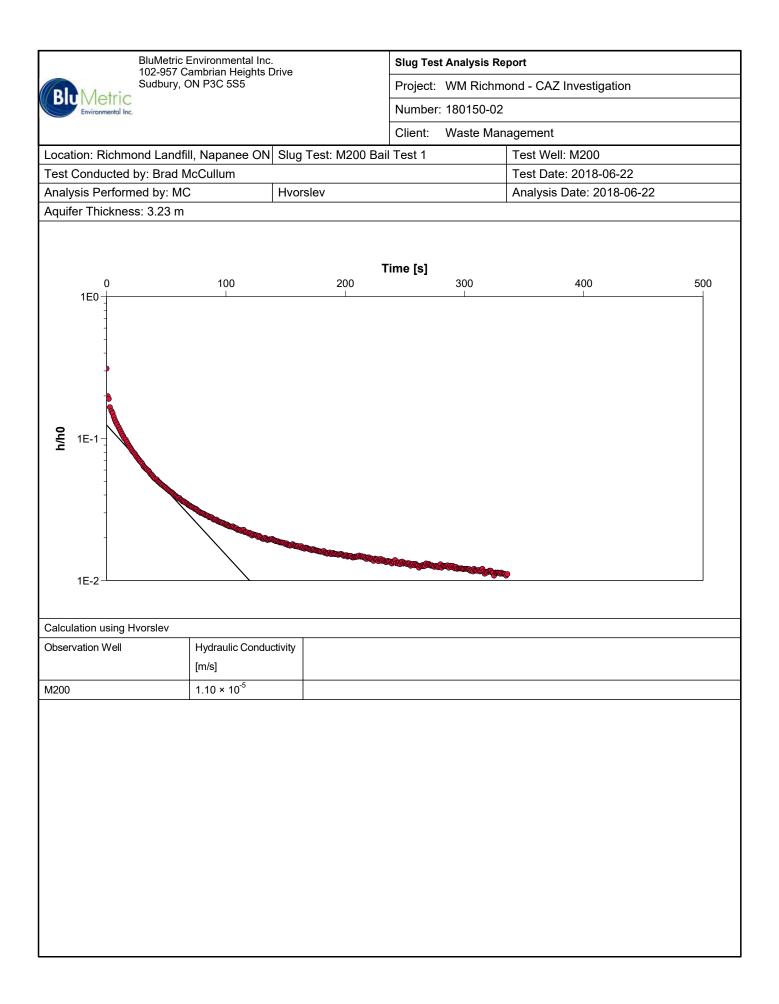

				Slug Test - An	alys	ses Report				
				Project: Hydrau	ılic T	esting April 2018	8			
				Number: 180150	Number: 180150-02					
				Client: WM						
Loc	cation: Richmond	S	lug Test: M196		Test Well: M196					
Tes	st Conducted by:	I				Test Date: 30/04	4/2018			
Aq	uifer Thickness: NAN	l m								
	Analysis Name	Analysis Performed	by Analysis Date	Method name	We	ell	T [m²/s]	S		
1	M196 - Hvorslev		30/04/2018	Hvorslev	M1	96		2.72 × 10 ⁻¹¹		
2	New analysis 3		01/05/2018	Hvorslev	M1	96		2.56 × 10 ⁻¹¹		

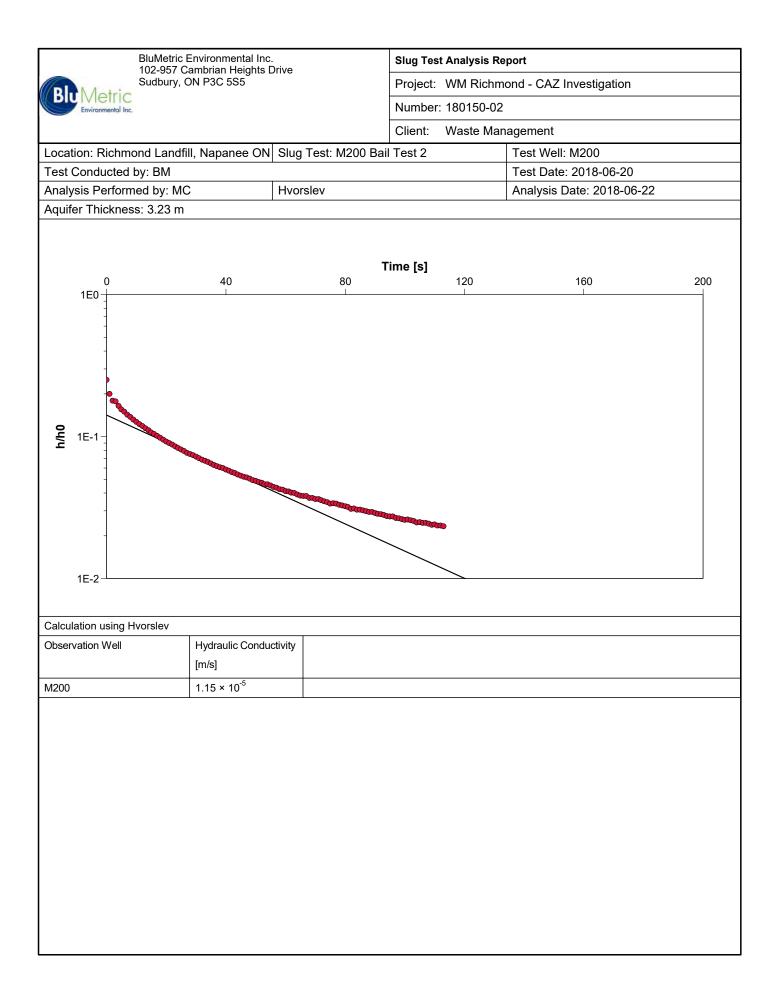

					Slug	Fest - Water	^r Level Data	Page 1 of 1		
					Project: Hydraulic Testing April 2018					
					Number: 180150-02					
					Client:	WM				
Locatio	on: Richmond		Slug T	est: M197	1		Test Well: M197			
Test C	Test Conducted by:			Test Date: 30/04/2018						
Water	Water level at t=0 [m]: 34.32			Static Water Level [m]: 3.00 Wat			Water level change at	t=0 [m]: 31.32		
	Time [s]	Water Le	vel	WL Chan [m]	ge		l			
1	0	34.32		31.32						
2	242100	34.14		31.14						
3	315900	34.11		31.11						
4	415800	34.08		31.08						
5	502200	34.05		31.05						
6	932400	33.85		30.85						
7	1531800	33.44	5	30.44	5					
8	1790100	33.25	5	30.25	5					





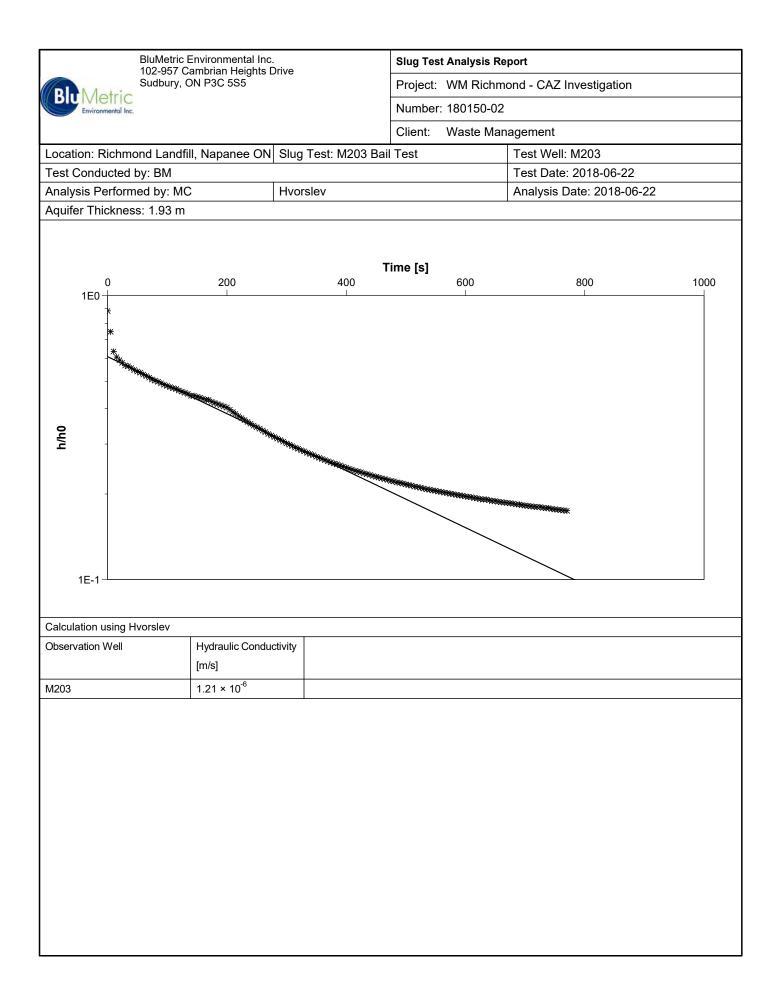

				Slug Test - Ar	alyses Report					
				Project: Hydrau	ulic Testing April 2	018				
				Number: 18015	0-02					
				Client: WM						
Lo	cation: Richmond	Slu	g Test: M197	I	Test Well: M	197				
Те	st Conducted by:			Test Date: 30/04/2018						
Aq	uifer Thickness: NAN	l m								
	Analysis Name	Analysis Performed by	Analysis Date	Method name	Well	T [m²/s]	S			
1	M197 - Hvorslev		30/04/2018	Hvorslev	M197		6.34 × 10 ⁻¹²			
					1	I	- I			

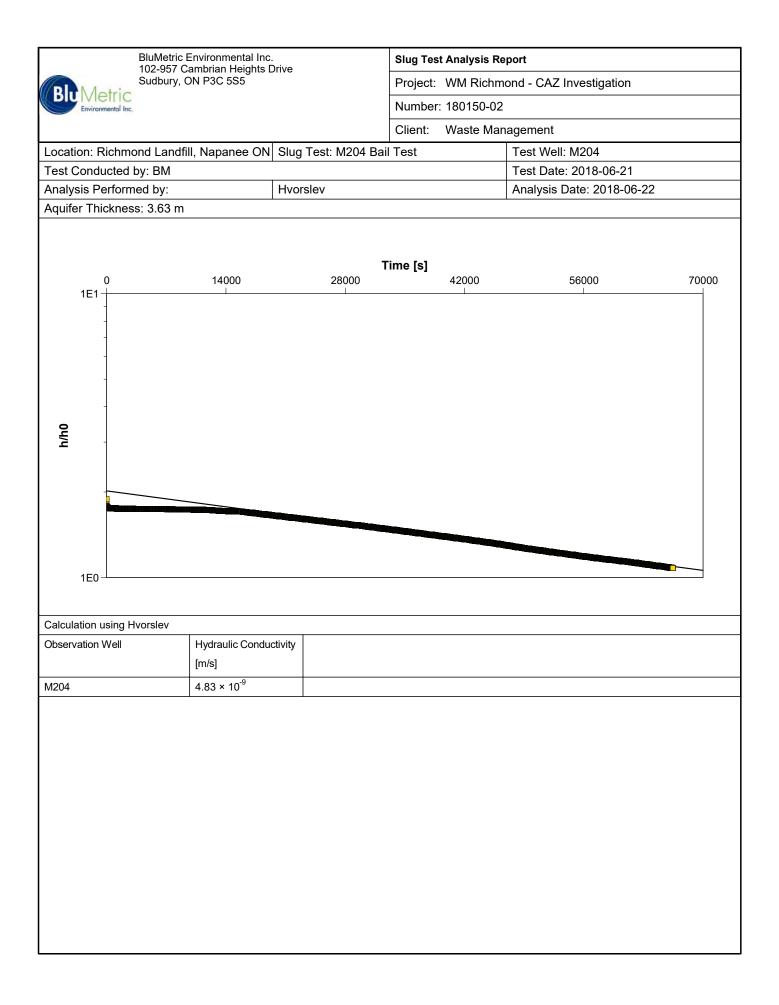

					Slug Test - Water Level Data Page 1 o					
					Project: Hydraulic Testing April 2018					
					Number: 180150-02					
					Client: WM					
Locatio	on: Richmond		Slug T	est: M198	1		Test Well: M198			
Test C	Fest Conducted by:			Test Date: 30/04/2018						
Water	Water level at t=0 [m]: 35.42			Static Water Level [m]: 3.00			Water level change at t	=0 [m]: 32.42		
	Time [s]	Water Le	vel	WL Chan [m]	ge		1			
1	0	35.42		32.42						
2	900	35.19		32.19						
3	73800	34.90		31.90						
4	173700	34.55		31.55						
5	260100	34.29		31.29						
6	690300	33.21		30.21						
7	1289700	31.07	5	28.07	5					
8	1548000	31.55	5	28.55	5					

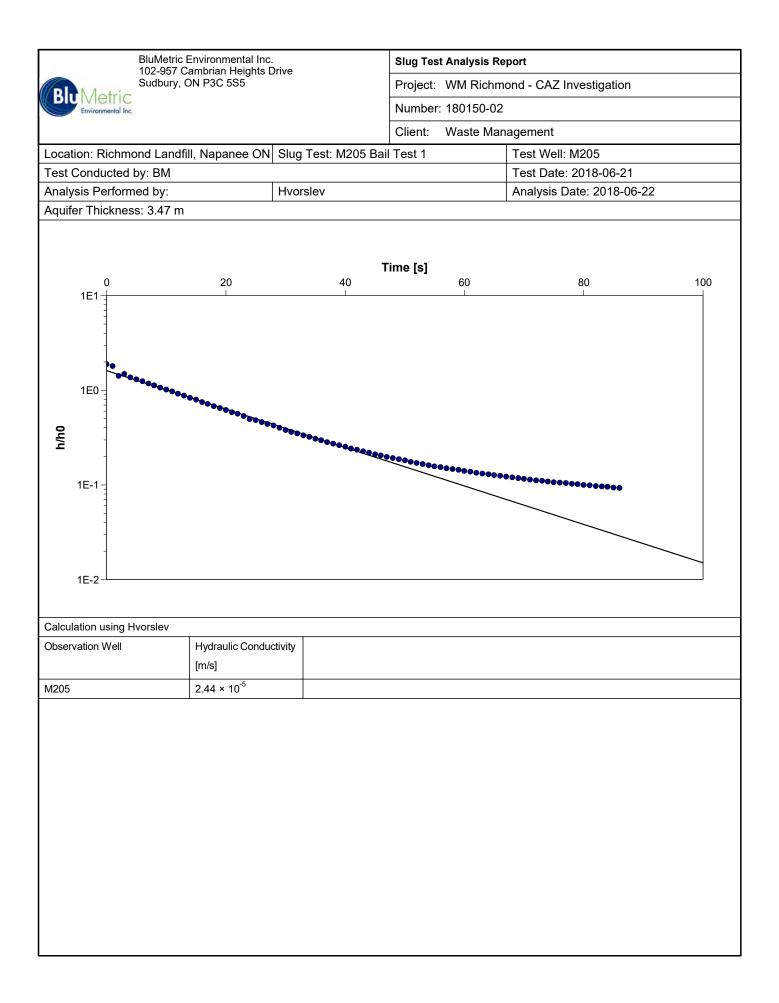


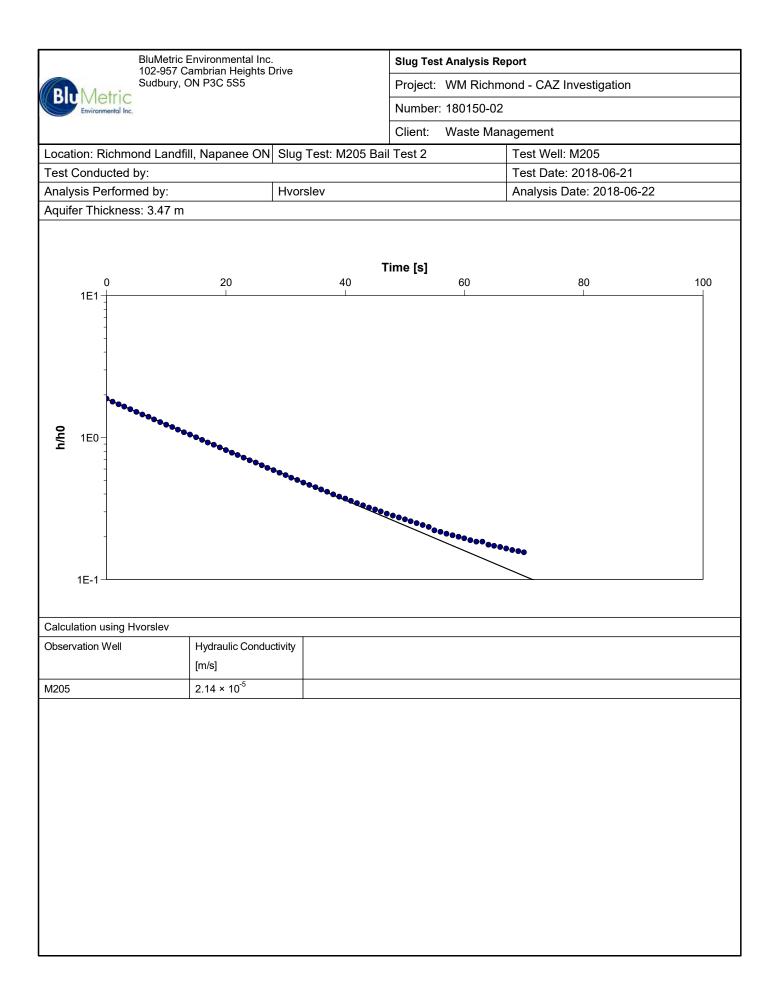


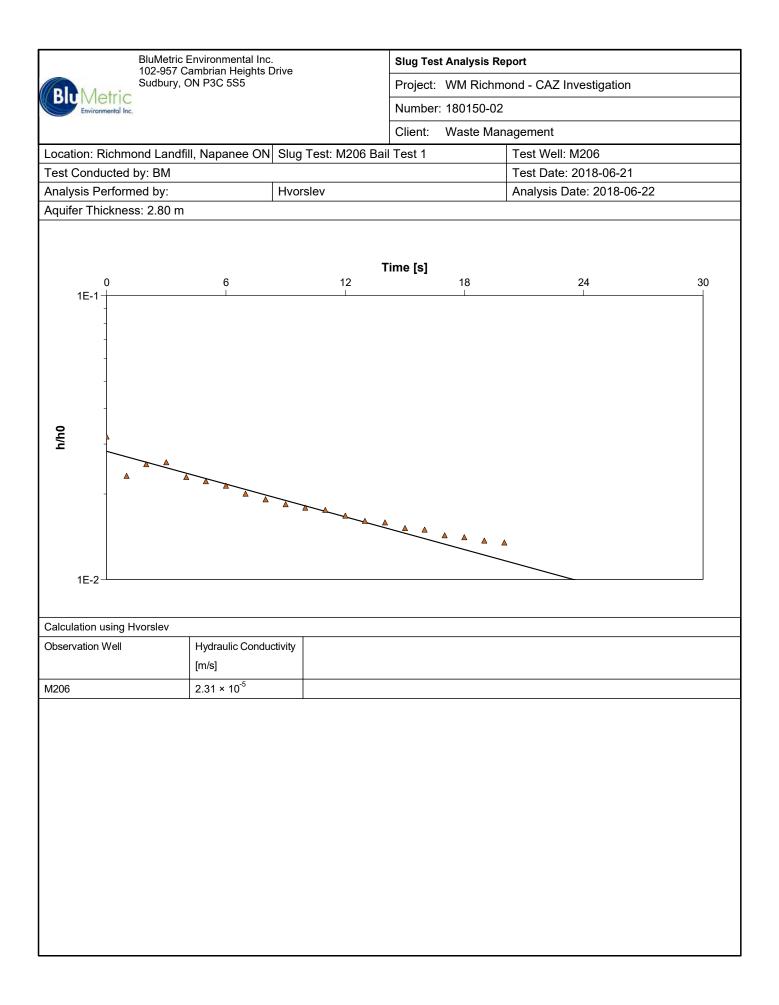

				Project: Hydrau	lic Testing April 201	8		
				Number: 180150-02				
				Client: WM				
Loc	ation: Richmond	Slu	g Test: M198	Test Well: M198				
Tes	st Conducted by:				Test Date: 30/0	4/2018		
	uifer Thickness: NAN	lm			1			
	Analysis Name	Analysis Performed by	Analysis Date	Method name	Well	T [m²/s]	S	
1	M198 - Hvorslev		30/04/2018	Hvorslev	M198		2.95 × 10 ⁻¹¹	

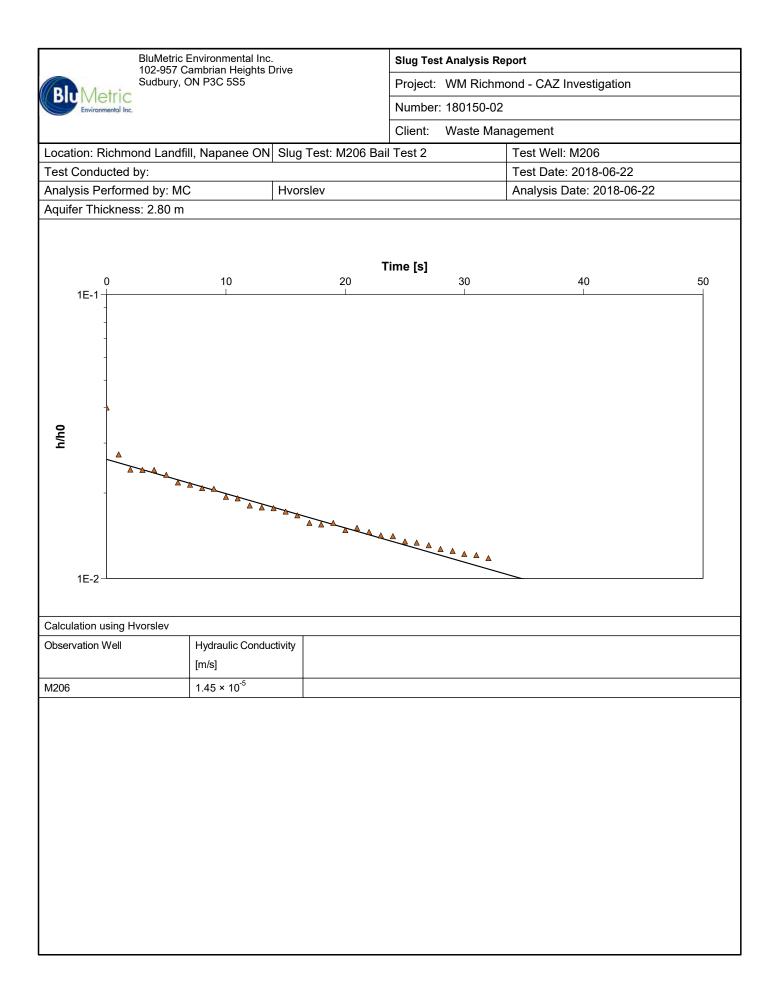

BluMetric Environmental Inc. 102-957 Cambrian Heights Drive Sudbury, ON P3C 5S5				Slug Test Analysis Report				
				Project: WM Richmond - CAZ Investigation				
				Number: 180150-02				
				Client: Waste Management				
Location: Richmond Landfill, Napanee ON Slug Test: M199 Bail					Test Well: M199			
Test Conducted by: Brad M	-				Test Date: 2018-06-20			
Analysis Performed by: MC	: Hvoi	rslev			Analysis Date: 2018-06-22			
Aquifer Thickness: 3.13 m	L. L.							
0 1E1	4000	<b>T</b> 8000	ime [s]	12000	16000	20000		
Calculation using Hvorslev								
Observation Well Hydraulic Conductivity								
	[m/s]							
M199	5.48 × 10 ⁻⁹							

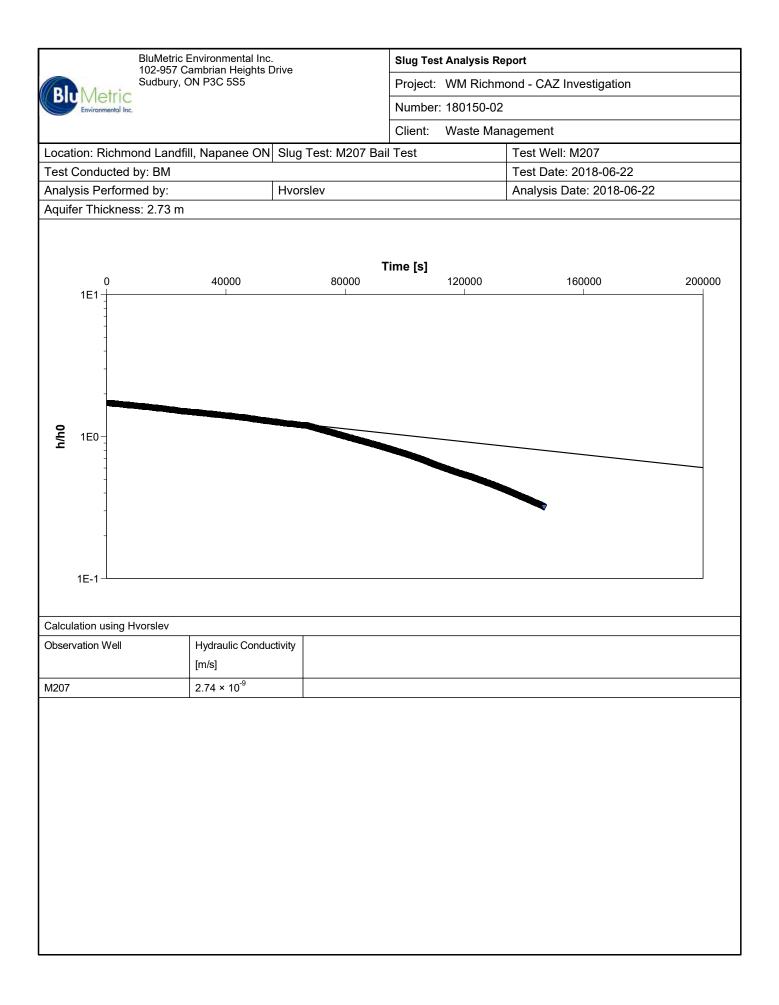




BluMetric Environmental Inc. 102-957 Cambrian Heights Drive Sudbury, ON P3C 5S5				Slug Test Analysis Report				
				Project: WM Richmond - CAZ Investigation				
				Number: 180150-02				
				Client: Waste Management				
Location: Richmond Landfil	I, Napanee ON Slug	Test: M201 Bail			Test Well: M201			
Test Conducted by: BM	<u>,   -   0</u>				Test Date: 2018-06-21			
Analysis Performed by: MC	Hvo	rslev			Analysis Date: 2018-06-22			
Aquifer Thickness: 2.75 m								
			ime [s]					
0 1E1 <del> </del>	6000 I	12000		18000	24000	30000		
Calculation using Hvorslev								
Observation Well	Hydraulic Conductivity							
	[m/s]							
M201	5.14 × 10 ⁻¹⁰							


BluMetric Environmental Inc. 102-957 Cambrian Heights Drive Sudbury, ON P3C 5S5				Slug Test Analysis Report				
				Project: WM Richmond - CAZ Investigation				
				Number: 180150-02				
				Client: Waste Management				
Location: Richmond Landfil	I, Napanee ON Slu	g Test: M202 Bail	Test		Test Well: M202			
Test Conducted by: BM		-			Test Date: 2018-06-21			
Analysis Performed by: MC	: Hvo	orslev			Analysis Date: 2018-06-22			
Aquifer Thickness: 0.64 m								
0 1E0-	14000	<b>T</b> 28000	ime [s]	42000	56000 I	70000		
Calculation using Hvorslev								
Observation Well	Hydraulic Conductivity							
	[m/s]							
M202	3.72 × 10 ⁻¹⁰							














## **BluMetric Environmental Inc.**

## **BluMetric Offices**

4-41 de Valcourt Street Gatineau, Québec Canada J87 8G9 Téléphone: 819 243.7555 Télécopieur: 819 243.0167 gatineau@blumetric.ca 3108 Carp Road PO Box 430 Ottawa, Ontario Canada KOA 1L0 Tel: 613.839.3053 Fax: 613.839.5376 ottawa@blumetric.ca 825 Milner Avenue Toronto, Ontario Canada M1B 3C3 Tel: 877.487.8436 toronto@blumetric.ca 276, Saint-Jacques Street Suite 818 Montréal, Québec Canada H2Y 1N3 Téléphone: 514 844.7199 Télécopieur: 514 841.9111 montreal@blumetric.ca 4 Cataraqui Street The Tower, The Woolen Mill Kingston, Ontario Canada K7K 127 Tel: 613.531.2725 Fax: 613.531.1852 kingston@blumetric.ca

4916 - 49th Street Yellowknife, NT Canada X1A 1P3 Tel: 867.873.3500 Fax: 867.873.3499 yellowknife@blumetric.ca 171 Victoria Street North Kitchener, Ontario Canada N2H 5C5 Tel: 519.742.6685 Fax: 519.742.9810 <u>kitchener@blumetric.ca</u> 102-957 Cambrian Heights Drive Sudbury, Ontario Canada P3C 5S5 Tel: 705.525.6075 Fax: 705.525.6077 sudbury@blumetric.ca 1046 Gorham Street Thunder Bay, Ontario Canada P7B 5X5 Tel: 807.707.1687 thunderbay@blumetric.ca

## www.blumetric.ca